МИТРОШИН Иван Владимирович

ИССЛЕДОВАНИЕ СТРУКТУРЫ БЕЛКОВ Р-ВЫСТУПА
БОЛЬШОЙ СУБЧАСТИЦЫ АРХЕЙНОЙ РИБОСОМЫ

03.01.03 – Молекулярная биология

Диссертация на соискание ученой степени
кандидата биологических наук

Научные руководители:
dоктор биологических наук,
профессор, М.Б. Гарбер
кandidat физико-математических наук
А.Г. Габдулхаков

Москва – 2015
СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ .. 5
ВВЕДЕНИЕ ... 6
ОБЗОР ЛИТЕРАТУРЫ ... 9
ИССЛЕДОВАНИЯ СТРУКТУРЫ L12/P-ВЫСТУПА РИБОСОМЫ ... 9
1. Компоненты L12/P-выступа рибосомы .. 13
 1.1. Бактериальные белки L10, L11 и L12 ... 13
 1.2. Белки эукариотического и архейного P-выступа .. 25
2. Взаимозаменяемость бокового выступа бактерий, архей и эукариот 36
3. Кристаллографические исследования L12/P-выступа в составе рибосом 38
Заключение .. 40
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ .. 42
1. Материалы ... 42
 1.1. Химические материалы .. 42
 1.1.1. Реактивы и ферменты ... 42
 1.1.2. Буферы ... 42
 1.1.3. Питательные среды ... 43
 1.2. Биологические материалы ... 43
 1.2.1. Бактериальные штаммы .. 43
 1.2.2. Плазмиды .. 43
 1.3. Принадлежности ... 43
 1.4. Приборы .. 44
2. Методы ... 44
 2.1. Методы генной инженерии ... 44
 2.1.1. Полимеразная цепная реакция .. 44
 2.1.2. Электрофорез ДНК в агарозном геле ... 45
 2.1.3. Обработка фрагментов ДНК сайт-специфическими эндонуклеазами рестрикции 46
 2.1.4. Очистка фрагментов ДНК .. 46
 2.1.5. Лигирование фрагментов ДНК ... 46
 2.1.6. Получение компетентных клеток E. coli ... 46
 2.1.7. Трансформация компетентных клеток E. coli лигазной смесью («Бело-голубой тест») ... 47
 2.1.8. Анализ клонов клеток методом ПЦР ... 47
 2.1.9. Трансформация компетентных клеток E. coli плазмидной ДНК 48
 2.1.10. Выделение плазмидной ДНК .. 48
2.1.11. Рестрикция и очистка плазмидной ДНК для транскрипции ... 48
2.1.12. Фенольная депротеинизация нуклеиновых кислот .. 49
2.1.13. Экспрессия рекомбинантных генов белков MjaP0NTF, MjaL11 .. 49
2.1.14. Экспрессия гена белка MjaL11 для получения селенометионинового производного белка ... 50
2.2. Биохимические методы при работе с белками .. 50
2.2.1. Выделение белков MjaP0NTF, MjaL11 и Se-Met MjaL11 ... 50
2.2.2. Хроматографическая очистка белка MjaP0NTF ... 50
2.2.3. Хроматографическая очистка белка MjaL11 и его селенометионинового производного 51
2.2.4. Электрофотрэ в ПААГ в денатурирующих условиях ... 52
2.2.5. Электрофотрэ в ПААГ в неденатурирующих условиях pH 4.5 ... 53
2.3. Биохимические методы при работе с РНК ... 53
2.3.1. Получение специфических фрагментов рРНК ... 53
2.3.2. Электрофотрэ РНК в ПААГ в денатурирующих условиях с мочевиной ... 54
2.3.3. Электрофотрэ белка, РНК, РНК-белковых комплексов в ПААГ в неденатурирующих условиях 54
2.3.4. Получение РНК-белковых комплексов .. 55
 2.3.4.1. Образование комплексов MjaP0NTF с фрагментами 23S рРНК разной длины .. 55
 2.3.4.2. Образование комплекса MjaP0NTF-MjaL11-23SpPHK(74) ... 55
 2.3.4.3. Образование комплекса MjaP0NTF-MjaL11-23SpPHK(74)-тиюстрептон .. 56
2.4. Кристаллизация белка и РНК-белковых комплексов ... 56
2.5. Кристаллографические методы ... 57
 2.5.1. Съемка и обработка дифракционных данных .. 57
 2.5.2. Анализ содержания ячейки .. 57
 2.5.3. Определение и уточнение структур ... 60
 2.5.3.1. Переуточнение структуры P0•(P1NTD)6 из P. horikoshii ... 60
 2.5.3.2. Определение и уточнение структуры MjaL11 ... 60
 2.5.3.3. Определение и уточнение структуры MjaP0NTF-23SpPHK(74) ... 62
 2.5.3.4. Определение и уточнение структуры MjaP0NTF-MjaL11-23SpPHK(74) ... 63
 2.5.3.5. Определение и уточнение структуры MjaP0NTF-MjaL11-23SpPHK(74)-тиюстрептон 65
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ ... 66
1. Кристаллизация и определение структур компонентов Р-выступа архейной рибосомы 66
1.1. Изолированный рибосомный белок L11 из археи *M. jannaschii* ..66
1.2. Фрагмент белка P0, P0NTF, в комплексе со специфичным фрагментом 23S рРНК..70
1.3. Тройной комплекс MjaP0NTF-MjaL11-23SpPHK(74) ..78
1.4. Комплекс MjaP0NTF-MjaL11-23SpPHK(74) с тиострептоном..............................79
1.5. Переуточнение структуры комплекса P0•(P1NTD)₆ из археи *P. horicoshii*81

2. Анализ структур компонентов архейного рибосомного P-выступа......................83
2.1. Структура изолированного рибосомного белка MjaL11 ..83
2.2. Анализ структур комплексов MjaP0NTF со специфичным фрагментом 23S рРНК в отсутствии и присутствии MjaL11 ...86
2.3. Взаимодействие белков архейного рибосомного P-выступа с 23S рРНК.............89
2.4. Взаимодействие архейного рибосомного P-выступа с антибиотиком тиострептоном ...92

2.5. Подвижность компонентов основания P-выступа архейной рибосомы..............97

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ ..102
СПИСОК ЛИТЕРАТУРЫ ..103
БЛАГОДАРНОСТИ ...113
СПИСОК СОКРАЩЕНИЙ

а. о. – аминокислотные остатки
БСА – бычий сывороточный альбумин
БФС – бромфеноловый синий
ДМЭ ПЭГ – диметиловый эфир полиэтиленгликоля
ДСН – додецилсульфат натрия
ДТТ – дитиотрейтол
ИПТГ – изопропил-β-D-тиогалактозид
н. о. – нуклеотидные остатки
ПААГ – полиакриламидный гель
ПЦР – полимеразная цепная реакция
ПЭГ – полиэтиленгликоль
ТЕМЕД – тетраметилэтилендиамин
Трис – трис(гидроксимиетил)аминометан
ЭДТА – этилендиаминтетрауксусная кислота
CTAB – цетилтриметиламмоний бромид
CTD – C-концевой домен
Eco – Escherichia coli
GDPCP – гуанозин-5’-(β,γ-метилен)-трифосфат
Hepes – 4-(2-гидроксиэтил)-1-пиперазинэтансульфоновая кислота
Hma – Haloarcula marismortui
MPD – 2-метил-2,4-пентадиол
NTD – N-концевой домен
NTF – N-концевой фрагмент
Pipes – пиперазин-бис(2-этансульфоновая кислота)
PMSF – фенилметилсульфонилфторид
TCEP – трис(2-карбоксиэтил)фосфин
Tma – Thermotoga maritima
X-gal – 5-бromo-4-хлоро-3-индойл-β-D-галактопиранозид
ВВЕДЕНИЕ

Актуальность проблемы. Рибосома – сложный макромолекулярный комплекс белков и рибонуклеиновых кислот, ответственный за биосинтез белка в клетках всех живых организмов. Начиная с середины прошлого века большое число работ было посвящено исследованию структуры рибосом и их компонентов, рибосомных белков и рибосомных РНК. Накопление знаний о структуре рибосом и развитие методической базы привело в начале двадцать первого века к прорыву в определении пространственных структур рибосом, сначала из прокариот, а затем и из эукариот. Эти достижения вносят огромный вклад в исследования механизма работы аппарата трансляции. Однако, несмотря на колоссальный прогресс в структурных исследованиях рибосом, имеются ещё белые пятна в их структуре. Это связано с высокой подвижностью некоторых участков рибосомы, что затрудняет определение структуры этих участков в составе рибосомы. В ряде случаев исследования структуры изолированных компонентов, входящих в состав подвижных рибосомных участков, вносят существенный вклад в дополнение и уточнение имеющихся моделей рибосом.

В 2000 году появилась первая структура 50S субчастицы архейной рибосомы с высоким разрешением, но P-выступ в этой модели отсутствовал полностью. Затем были определены структуры малой субчастицы бактериальной рибосомы и целой бактериальной рибосомы. Определение структур бактериального рибосомного белка L11 в комплексе с фрагментом 23S рРНК и комплекса бактериальных рибосомных белков L10-L12NTD позволило интерпретировать электронную плотность в районе L12-выступа в модели бактериальной рибосомы с фактором элонгации G, а также частично визуализировать основание P-выступа большой субчастицы архейной рибосомы. Знание структур двухдоменного фрагмента архейного рибосомного белка P0 и комплекса архейных рибосомных белков P0-P1NTD позволило частично определить структуру P-выступа в составе эукариотической рибосомы и дополнить модель 50S субчастицы архейной рибосомы в районе P-выступа. Таким образом, определение структур отдельных элементов L12/P-выступа способствовало визуализации этого выступа в составе рибосом. Настоящая работа является продолжением этих исследований.

Цель и задачи работы. Основной целью представленной диссертационной работы является исследование структуры компонентов бокового P-выступа большой рибосомной субчастицы архейной рибосомы, чтобы использовать эти структурные данные для дальнейшего уточнения структуры архейной рибосомы. Для достижения этой цели были поставлены следующие основные задачи:
1. Кристаллизация и определение структуры изолированного рибосомного белка L11 из археи *Methanococcus jannaschii* (MjaL11).

2. Кристаллизация и определение структуры комплекса двухдоменного фрагмента архейного рибосомного белка MjaP0 со специфичным фрагментом 23S рРНК.

3. Кристаллизация и определение структуры тройного комплекса, состоящего из фрагмента рибосомного белка MjaP0, рибосомного белка MjaL11 и специфичного фрагмента 23S рРНК (с антибиотиком тиострептоном и без антибиотика).

4. Анализ пространственных структур данных РНК-белковых комплексов и изолированного белка MjaL11.

Научная новизна. Получены кристаллы изолированного полноразмерного архейного рибосомного белка MjaL11 и определена его структура. Впервые была визуализирована структура N-концевого домена этого белка. Получены кристаллы комплекса N-концевого двухдоменного фрагмента архейного рибосомного белка MjaP0 (MjaP0NTF) со специфическим фрагментом 23S рРНК в присутствии и отсутствии белка MjaL11 и определены структуры этих комплексов. С помощью наложения всех известных структур архейного белка P0 было продемонстрировано, что специфичный для архей и зукариот домен 2 белка P0 чрезвычайно подвижен, но, несмотря на высокую подвижность, этот домен не взаимодействует с рРНК. Сравнительный анализ структур MjaP0NTF-23SpPHK и MjaP0NTF-MjaL11-23SpPHK показал, что при связывании белка MjaL11 с комплексом MjaP0NTF-23SpPHK не происходит конформационных изменений в пространственной структуре фрагмента 23S рРНК. Анализ пространственных структур архейных рибосомных белков MjaL11 и MjaP0NTF в комплексе с фрагментом 23S рРНК позволил выявить структурные особенности поверхностей контакта данных белков с рРНК. Также впервые закристаллизован тройной комплекс MjaP0NTF-MjaL11-23SpPHK с антибиотиком тиострептоном и определена его структура. Показано, что сайт связывания тиострептона в данном тройственном комплексе расположен между 23S рРНК и N-концевым доменом белка L11, как и в бактериальной рибосоме.

Теоретическая и практическая значимость работы.

Результаты данной работы имеют фундаментальное значение и вносят существенный вклад в понимание структурных основ функционирования P-выступа в архейных и зукариотических рибосомах. Эти данные способствуют уточнению структуры большой субчастицы архейной и зукариотической рибосом.

В методическом аспекте данная работа будет полезна для специалистов, работающих в области препаративной биохимии и кристаллизации макромолекул, как в нашей стране, так и за рубежом.
Апробация работы и публикации. Основные результаты работы неоднократно докладывались на Российских и Международных конференциях. По материалам диссертации опубликовано 15 печатных работ, из них статей в рецензируемых научных изданиях – 4, материалов конференций – 11. В банк белковых структур PDB депонировано 5 пространственных структур (3JSY, 5COL, 5D6G, 5D8H, 5DAR).
В 1950-х годах были открыты клеточные органеллы, которые ответственны за биосинтез белка в клетке. Эти органеллы были названы рибосомами. Строение рибосом исследовалось методами ультрацентрифугирования и электронной микроскопии. Эти исследования показали, что в определенных условиях (например, низкая концентрация ионов магния) рибосома диссоциирует на малую и большую субчастицы. С помощью электронной микроскопии были получены фотографии целой рибосомы и её большой и малой субчастиц в разных проекциях (Рис. 1). Большая субчастица рибосомы содержит тело и три характерных периферических выступа. На рисунке 1В представлена большая субчастица бактериальной рибосомы Escherichia coli в коронообразной проекции (частица обращена своей внешней выпуклой стороной): с левой стороны субчастицы расположен боковой пальцеобразный выступ (L12-выступ), посередине – центральный протуберанец, который можно назвать головкой большой субчастицы и справа – боковой L1-выступ (Boublik et al., 1976; Lake, 1976).

Рибосома представляет собой макромолекулярный рибонуклеопротеидный комплекс. Рибосомная РНК (рРНК) определяет основные структурные и функциональные свойства рибосом, но для нормального функционирования рибосомы необходимо наличие как рРНК (в малой субчастице – одна высокополимерная молекула РНК, в большой субчастице одна высокополимерная РНК и одна или две низкомолекулярные), так и рибосомных белков (более 50 индивидуальных рибосомных белков в бактериальной 70S рибосоме).
В процессе биосинтеза белка рибосома взаимодействует с матричной РНК (мРНК), транспортными РНК (тРНК), трансляционными факторами инициации, элонгации и терминации и с другими лигандами (Спирина, 2011).

Рабочий цикл рибосомы состоит из трех этапов: инициации, элонгации и терминации. Факторы трансляции способствуют белковому синтезу на каждом этапе рабочего цикла рибосомы. Боковой L12/P-выступ рибосомы способствует взаимодействию рибосомы с факторами элонгации и терминации трансляции. L12-выступ бактерий участвует еще и в инициации трансляции: этот боковой выступ взаимодействует с преинициаторным комплексом, увеличивая скорость ассоциации малой и большой субчастиц рибосомы (Huang et al., 2010). С помощью криоэлектронной микроскопии и последующей реконструкции структуры рибосомы показано, что в процессе элонгационного цикла рибосомы L12-выступ подвергается различным конформационным перестройкам (Рис. 2).

Малая и большая рибосомные субчастицы содержат большое число индивидуальных белков. Практически все они представлены одной копией на рибосоме. Первая попытка систематизировать рибосомные белки была основана на стандартном экспериментальном методе, в качестве которого использовался двумерный электрофорез в геле. Этот наиболее удобный метод позволил полностью разделить рибосомные белки по заряду и размеру молекул. Было предложено называть рибосомные белки, нумеруя их сверху вниз и слева направо относительно стартовой точки на электрофореграмме (Рис. 3) (Kaltschmidt and Wittmann, 1970). Белки малой субчастицы рибосомы обозначены буквой S (от английского “Small”), а белки большой субчастицы – буквой L (от английского “Large”).

Выяснилось, что малая субчастица рибосомы E. coli содержит 21 белок (S1-S21), а большая субчастица 34 белка (L1-L36). Пятера маленьких белков L34, L35 и L36 плохо выявляются электрофорезом в стандартных условиях. Белок S20 идентичен белку L26, а белок L7, который обнаружен не во всех бактериях, представляет собой N-ацетилированное производное белка L12 (Terhorst et al., 1972). Пятно, обозначенное как белок L8, соответствует не индивидуальному белку, а прочному комплексу белков L10-L12 (Pettersson et al., 1976).
Рис. 2. Структуры рибосом E. coli, полученные методом криоэлектронной микроскопии: (A) фрагмент 70S рибосомы в комплексе с EF1A•ГТФ•тРНК•кирромицин; (Б) фрагмент 70S рибосомы в А/Р-претранслокационном состоянии; (В) 70S рибосома•EF2•GDPCP; (Г) 70S рибосома•EF2•ГДФ•фусидовая кислота. Рисунки с небольшими изменениями взяты из работ Stark et al., 1997 и Agrawal et al., 1999. Желтым/голубым цветом окрашена 70S рибосома, рыжим – фактор EF1A, красным – фактор EF2, зеленым – тPHК.

Первоначально рибосомные белки каждого вида организмов имели собственное обозначение, соответствующее их электрофоретическому разделению. Рибосомные белки стали обозначать с приставками, например, белки бактерии E. coli с приставкой Ec, белки архей Haloarcula marismortui – Hm, эукариотические белки Saccharomyces cerevisiae – Y. В возникшей номенклатуре один и тот же номер мог принадлежать негомологичным белкам различных видов. При сравнении аминокислотных последовательностей рибосомных белков была найдена гомология между белками разных видов, а также было обнаружено, что большая часть рибосомных белков эволюционно консервативна (Liao and Dennis, 1994). Это позволило создать первоначальную номенклатуру для консервативных гомологичных белков бактерий, архей и эукариот.

С появлением полученных методами кристаллографии или криоэлектронной микроскопии моделей бактериальных (Agrawal et al., 1998; Harms et al., 2001; Stark et al., 1997), архейных (Armache et al., 2013; Ban et al., 2000) и эукариотических (Ben-Shem et al., 2010; Klinge et al., 2011; Spahn et al., 2001) рибосом отсутствие единого обозначения рибосомных белков стало затруднять сравнительный анализ структур. Для решения этой проблемы в 2014 году была создана единая номенклатура рибосомных белков всех доменов жизни (Таблица 1) (Ban et al., 2014). В основу новой номенклатуры легло обозначение рибосомных белков *E. coli*, поскольку впервые рибосомные белки были выделены именно из этого организма, их аминокислотные последовательности стали известны раньше последовательностей других рибосомных белков, а также эти белки были наиболее подробно описаны в литературе. Белкам, которые обнаружены в рибосомах всех доменов жизни, была присвоена приставка “u” (от английского “universal”) и нумерация белков *E. coli*. Бактериальные белки, у которых не обнаружено гомологов среди архей и эукариот, были обозначены приставкой “b” (от английского “bacterial”). Архейным рибосомным белкам, которые не имеют гомологов в бактериальной и эукариотической рибосомах, была приписана приставка “a” (от английского “archaeal”). Приставка “e” (от английского “eukaryotic”) была добавлена не только для обозначения
эукариотических рибосомных белков, для которых не найдены бактериальные и архейные гомологии, но также и для гомологичных им архейных белков.

В предложенной номенклатуре рибосомные белки L12/P-выступа приобрели новое обозначение. Бактериальный белок L10 и его архейный и эукариотический гомологи P0 было предложено обозначать как uL10, а бактериальный белок L12 – как bL12. В археях и эукариотах обнаружено гомологов бактериального белка L12, но имеются его функциональные аналоги, называемые белками P1/P2 в эукариотах и P1 в археях. Соответственно, этот боковой выступ у архей и эукариот обозначается теперь как P-выступ. Бактериальный и архейный белки L11 и их эукариотический аналог, белок L12e, предложено обозначать как uL11.

Поскольку новая номенклатура была принята относительно недавно и еще не получила широкого распространения, во избежание недоразумений в данной работе будет использовано старое обозначение рибосомных белков L12/P-выступа (Таблица 1).

1. Компоненты L12/P-выступа рибосомы

1.1. Бактериальные белки L10, L11 и L12

Рибосомные белки L10, L11 и L12 вместе с фрагментом домена II 23S рРНК образуют характерный морфологический выступ бактериальной рибосомы, называемый L12-выступом. Двух-стадийная обработка большой рибосомной субъединицы E. coli 1 М NH₄Cl и 50% этанолом при 0°C и 37°C позволяет полностью удалить эти белки из рибосомы (Highland and Howard, 1975).

Рибосомный белок L12 является одним из первых белков, выделенных из рибосомы. Это единственный белок большой субчастицы рибосомы, который представлен в нескольких копиях (Hardy, 1975). В рибосомах E. coli присутствует дополнительный рибосомный белок – белок L7 (Kalschmidt and Wittmann, 1970). L7 является точной копией рибосомного белка L12, единственным отличием является то, что L7 ацетилирован по N-концевому остатку серина (Terhorst et al., 1972). Из-за близкого сходства эти белки ранее в литературе упоминались как белок L7/L12. Соотношение белков L7 : L12 в клетке не постоянно и зависит от фазы роста клеток. В ранней логарифмической фазе роста клеток E. coli в рибосомах присутствие белка L7 минимально. Увеличение его количества наблюдается при переходе из логарифмической фазы роста клеток в стационарную fazu (Gordiyenko et al., 2008; Ramagopal and Subramanian, 1974).
Таблица 1. Старая и новая номенклатуры рибосомных белков. Таблица взята с изменениями из работ Armache et al., 2013 и Ban et al., 2014.

<table>
<thead>
<tr>
<th>Новое название</th>
<th>Домены жизни</th>
<th>Старое название</th>
<th>Новое название</th>
<th>Домены жизни</th>
<th>Старое название</th>
</tr>
</thead>
<tbody>
<tr>
<td>bS1</td>
<td>Б</td>
<td>—</td>
<td>eS1</td>
<td>АЭ</td>
<td>—</td>
</tr>
<tr>
<td>eS2</td>
<td>БАЭ</td>
<td>—</td>
<td>uS2</td>
<td>БАЭ</td>
<td>—</td>
</tr>
<tr>
<td>uS3</td>
<td>БАЭ</td>
<td>—</td>
<td>S3</td>
<td>S3</td>
<td>—</td>
</tr>
<tr>
<td>uS4</td>
<td>БАЭ</td>
<td>—</td>
<td>S4</td>
<td>S4</td>
<td>—</td>
</tr>
<tr>
<td>eS4</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>S4e</td>
<td>S4</td>
</tr>
<tr>
<td>uS5</td>
<td>БАЭ</td>
<td>—</td>
<td>S5</td>
<td>S5</td>
<td>—</td>
</tr>
<tr>
<td>bS6</td>
<td>Б</td>
<td>—</td>
<td>S6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>eS6</td>
<td>АЭ</td>
<td>—</td>
<td>S6e</td>
<td>S6</td>
<td>—</td>
</tr>
<tr>
<td>uS7</td>
<td>БАЭ</td>
<td>—</td>
<td>S7</td>
<td>S7</td>
<td>—</td>
</tr>
<tr>
<td>eS7</td>
<td>Э</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>S7</td>
</tr>
<tr>
<td>uS8</td>
<td>БАЭ</td>
<td>—</td>
<td>S8</td>
<td>S8</td>
<td>S22/S15A</td>
</tr>
<tr>
<td>aS8</td>
<td>A</td>
<td>—</td>
<td>—</td>
<td>L7ae</td>
<td>—</td>
</tr>
<tr>
<td>eS8</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>S8e</td>
<td>S8</td>
</tr>
<tr>
<td>uS9</td>
<td>БАЭ</td>
<td>—</td>
<td>S9</td>
<td>S9</td>
<td>S16</td>
</tr>
<tr>
<td>uS10</td>
<td>БАЭ</td>
<td>—</td>
<td>S10</td>
<td>S10</td>
<td>S20</td>
</tr>
<tr>
<td>eS10</td>
<td>Э</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>S10</td>
</tr>
<tr>
<td>uS11</td>
<td>БАЭ</td>
<td>—</td>
<td>S11</td>
<td>S11</td>
<td>S14</td>
</tr>
<tr>
<td>uS12</td>
<td>БАЭ</td>
<td>—</td>
<td>S12</td>
<td>S12</td>
<td>S23</td>
</tr>
<tr>
<td>eS12</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>S12e</td>
<td>S12</td>
</tr>
<tr>
<td>uS13</td>
<td>БАЭ</td>
<td>—</td>
<td>S13</td>
<td>S13</td>
<td>S18</td>
</tr>
<tr>
<td>uS14</td>
<td>БАЭ</td>
<td>—</td>
<td>S14</td>
<td>S14</td>
<td>S29</td>
</tr>
<tr>
<td>uS15</td>
<td>БАЭ</td>
<td>—</td>
<td>S15</td>
<td>S15</td>
<td>S13</td>
</tr>
<tr>
<td>bS16</td>
<td>Б</td>
<td>—</td>
<td>S16</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>eS16</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>L19e</td>
<td>L19</td>
</tr>
<tr>
<td>uS17</td>
<td>БАЭ</td>
<td>—</td>
<td>S17</td>
<td>S17</td>
<td>S11</td>
</tr>
<tr>
<td>eS17</td>
<td>Э</td>
<td>—</td>
<td>—</td>
<td>S17e</td>
<td>S17</td>
</tr>
<tr>
<td>bS18</td>
<td>Б</td>
<td>—</td>
<td>S18</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>eS19</td>
<td>БАЭ</td>
<td>—</td>
<td>S19</td>
<td>S19</td>
<td>S15</td>
</tr>
<tr>
<td>eS19</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>S19e</td>
<td>S19</td>
</tr>
<tr>
<td>bS20</td>
<td>Б</td>
<td>—</td>
<td>S20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>eS21</td>
<td>Э</td>
<td>—</td>
<td>—</td>
<td>S21</td>
<td>—</td>
</tr>
<tr>
<td>eS22</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>S24e</td>
<td>S24</td>
</tr>
<tr>
<td>eS23</td>
<td>Э</td>
<td>—</td>
<td>—</td>
<td>S25e</td>
<td>S25</td>
</tr>
<tr>
<td>eS24</td>
<td>Э</td>
<td>—</td>
<td>—</td>
<td>S26</td>
<td>—</td>
</tr>
<tr>
<td>eS25</td>
<td>Э</td>
<td>—</td>
<td>—</td>
<td>S27e</td>
<td>S27</td>
</tr>
<tr>
<td>eS26</td>
<td>Э</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>S28</td>
</tr>
<tr>
<td>eS27</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>S29</td>
</tr>
<tr>
<td>eS28</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>S30e</td>
<td>S30</td>
</tr>
<tr>
<td>eS30</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>S27ae</td>
<td>S31/S27a</td>
</tr>
<tr>
<td>eS31</td>
<td>АЭ</td>
<td>—</td>
<td>—</td>
<td>S27ae</td>
<td>S31/S27a</td>
</tr>
</tbody>
</table>

* обозначены дрожжевые/человеческие эукариотические рибосомные белки.
Скорость трансляции и уровень ошибок в процессе биосинтеза белка на рибосомах зависит от наличия белка L12 (Kirsebom and Isaksson, 1985; Pettersson and Kurland, 1980). Этот белок вовлечен во взаимодействие рибосомы с факторами трансляции (Fakunding et al., 1973; McCaughan et al., 1984; Sander et al., 1972), а также влияет на уровень фактор-зависимого гидролиза ГТФ на рибосоме (Möller et al., 1983). Удаление рибосомного белка L12 из рибосомы затрудняет связывание факторов элонгации EF1A и EF2 с рибосомой (Sander et al., 1975) и затрагивает другие фактор-зависимые функции, например, связывание аминоацил-тРНК с А-сайтом рибосомы, транслокацию, и, как следствие, гидролиз ГТФ (Donner et al., 1978; Koteliansky et al., 1978). С помощью данных гетероядерной ЯМР-спектроскопии было показано, что белок L12 взаимодействует напрямую с трансляционными факторами с помощью консервативного связывающего участка, который расположен в C-концевом домене белка (Helgstrand et al., 2007).

В процессе инициации трансляции белок L12 необходим для узнавания фактора инициации трансляции 2 (IF2) в комплексе с ГТФ в составе 30S преинициаторного комплекса. Результатом такого взаимодействия становится увеличение скорости ассоциации малой и большой субчастиц. Удаление белка L12 из рибосомы приводит к резкому снижению скорости ассоциации рибосомных субъединиц, но при этом скорость гидролиза ГТФ на IF2 и скорость освобождения неорганического фосфата не изменяются. Из этого следует, что белок L12 не является ГТФаза-активирующим белком для фактора инициации трансляции 2 (Huang et al., 2010).

Конформационные изменения белка L12 могут отражать функциональные состояния рибосомы (Gudkov, 1997). При взаимодействии факторов элонгации EF1A и EF2 с рибосомой можно выделить два основных состояния белка L12: до и после гидролиза ГТФ. Когда рибосома связана с EF2 и еще не произошел гидролиз ГТФ, белок L12 доступен для расщепления протеазой. После гидролиза ГТФ белок L12 становится нечувствительным к действию протеазы (Gudkov and Gongadze, 1984). При связывании EF1A с рибосомой белок L12 сохраняет устойчивость к протеолитическому расщеплению, как и в свободной рибосоме. После EF1A-зависимого гидролиза ГТФ белок изменяет конформацию и становится доступным для расщепления протеазой (Gudkov and Bubunenko, 1989).

Рибосомный белок L12 состоит из двух доменов и длинной гибкой перетяжки (Gudkov and Behlke, 1978; Gudkov et al., 1980, 1982). C-концевой домен белка L12 (L12CTD) ответственен за взаимодействие с факторами трансляции (Oleinikov et al., 1998; Olson et al., 1986), а N-концевой домен белка L12 (L12NTD) — за димеризацию и связывание с рибосомным белком L10 (Gudkov and Behlke, 1978). N- и C-концевые домены L12 соединены между собой гибкой перетяжкой, которая обеспечивает подвижность молекулы белка (Bocharov et al., 2004). Длина перетяжки влияет не только на подвижность двух доменов друг относительно друга, но и на связывание факторов элонгации, гидролиз ГТФ на рибосоме, скорость и точность трансляции (Bubunenko et al., 1992; Dey et al., 1995). Удаление этого участка приводит к инактивации белка L12 (Bubunenko et al., 1992).

В 1980 году был закристаллизован C-концевой домен белка L12 из E. coli и определена его структура с разрешением 2.6 Å (Leijonmarck et al., 1980). Это была первая кристаллическая структура рибосомного белка. В 1987 году было улучшено разрешение этой структуры до 1.7 Å (Рис. 4А) (Leijonmarck and Liljas, 1987).

Рис. 4. (А) Пространственная структура C-концевого домена рибосомного белка L12 из E. coli, PDB код 1CTF. Красным цветом окрашены α-спирали, голубым — β-тяжи. (Б) Пространственная структура полноразмерного рибосомного белка L12 из Thermotoga maritima, PDB код 1DD3. Зеленым цветом окрашен C-концевой домен, желтым цветом — перетяжка, оранжевым цветом — N-концевой домен.

Позднее появилась пространственная структура полноразмерного белка L12 из Thermotoga maritima с разрешением 2.0 Å (Рис. 4Б) (Wahl et al., 2000). L12NTD содержит две короткие спирали α1 и α2. Длинная шарнирная спираль α3 представляет собой перетяжку, которая отделяет N-концевой домен от глобулярного C-концевого домена. Эта
спираль образована 20 аминокислотными остатками, преимущественно гидрофобными. C-концевой домен белка L12 имеет плотную упаковку и состоит из трех-тяжевого антипараллельного β-листа, окруженного с одной стороны тремя α-спирами. Две спирали α4 и α6 расположены практически параллельно направлению β-листа (Wahl et al., 2000).

В 2004 году определена пространственная структура димера белка L7, N-ацетилированного варианта белка L12 из E. coli, методом ядерного магнитного резонанса в растворе (ЯМР) (Bocharov et al., 2004). Белок L7 находится в вытянутой конформации. Данная структура димера белка L7 сильно отличается от кристаллической структуры белка L12 из T. maritima в области перетяжки. Гибкая перетяжка в структуре каждого мономера белка L7 не имеет определенной структурной укладки. Определенная методом ЯМР структура димера белка L7 позволила определить способ димеризации белка в растворе. Димеризация белка L7 происходит за счет контакта двух антипараллельных V-образных α-α-шпилек N-концевого домена, которые образуют симметричный четырех-спиральный узел (Рис. 5Б). В результате гидрофобного взаимодействия спирами α1 и α2 и двух солевых мостиков между остатками Glu11 и Lys28, Asp4 и Lys24 поддерживается плотный и специфический контакт между двумя мономерами белка L7.

Рис. 5. (А) Пространственная структура димера рибосомного белка L7 из E. coli, PDB код 1RQU; (Б) димер N-концевого домена белка L7 из E. coli. Рисунок (Б) с изменениями взят из работы Bocharov et al., 2004. Серым и зеленым цветами окрашены разные мономеры белка.
На основании полученных структур белка L12 из *T. maritima* и димера белка L7 из *E. coli* была предложена модель молекулярного переключения между двумя состояниями белка (Рис. 6). Данная модель предполагает, что участок в области перетяжки белка L12 может выполнять роль молекулярного переключателя: молекула принимает или «закрытую», компактную конформацию, когда фактор элонгации связан с рибосомой, или «открытую», вытянутую конформацию после гидролиза ГТФ и освобождения фактора элонгации из рибосомы (Bocharov et al., 2004).

Рис. 6. Модель молекулярного переключения между двумя состояниями белка L12. Рисунок с небольшими изменениями взят из работы Bocharov et al., 2004.

Димеры белка L12 связываются с рибосомным белком L10, образуя в растворе прочный комплекс рибосомных белков L10-L12. Термостабильность белков L10 и L12 в комплексе повышается по сравнению с индивидуальным состоянием (Gudkov et al., 1978). Комплекс L10-L12 из *E. coli* остается стабильным в присутствии 6 М мочевины при значении pH 4.6. В связи с этим при систематизации рибосомных белков методом двумерного электрофореза сохранившийся в денатурирующих условиях комплекс белков L10-L12 был ошибочно принят за индивидуальный белок, которому было присвоено название L8 (Pettersson et al., 1976).

Для рибосомного комплекса белков L10-L12 из *E. coli* было установлено соотношение белков L10 и L12 как 1 : 4 методами изотопного разведения (Pettersson and Liljas, 1979), равновесного ультрацентрифугирования и количественного анализа пятен белков на электрофореграмме (Gudkov et al., 1978). Поэтому долгое время считалось, что бактериальный комплекс рибосомных белков L10-L12 может существовать только в виде пентамера. Появление кристаллической структуры рибосомного комплекса L10-L12NTD из *T. maritima* изменило представление о соотношении белков L10 и L12. В данной
структуре комплекса шесть молекул N-концевого домена белка L12 образовали с одной молекулой белка L10 гептамерный комплекс (Diaconu et al., 2005). В связи с этим было выдвинуто предположение, что разница между соотношением белков в L10-L12 комплексе из E. coli и термофильной бактерии T. maritima зависит от природы организма, из которого выделены белки, и дополнительная аминокислотная последовательность в C-концевом домене белка L10 термофильных бактерий может быть местом связывания для третьего димера белка L12 (Ilag et al., 2005). Результаты, полученные методом масс-спектрометрии, подтвердили это предположение. Было показано, что комплексы L10-L12 из мезофильных бактерий являются пентамерными, а из термофильных бактерий – исключительно гептамерными (Gordiyenko et al., 2010; Ilag et al., 2005).

Рибосомный белок L10 играет роль моста между димерами белка L12 и рибосомой. C-концевая часть белка L10 мезофильных бактерий содержит два независимых сайта связывания для димеров белка L12, тогда как N-концевой частью белок L10 взаимодействует с 23S рРНК (Gudkov et al., 1980). Показано, что при удалении последних десяти C-концевых аминокислотных остатков белка L10 из E. coli белок L10 может связать только один из двух димеров белка L12, а удаление последних 20-33 остатков приводит к неспособности белка L10 связывать димеры L12 (Griaznova and Traut, 2000).

В кристаллической структуре комплекса рибосомного белка L10 с димерами N-концевого домена белка L12 из T. maritima (Рис. 7А), определенной с разрешением 2.3 Å (Diaconu et al., 2005), одна молекула белка L10 формирует комплекс с шестью молекулами L12NTD, которые образуют три димера. Гидрофобные взаимодействия образуют основной контакт между белками L10 и L12, а солевые мостики и водородные связи окружают этот контакт.

Белок L10 состоит из двух доменов: N-концевого РНК-связывающего домена и C-концевого домена, с которым связывается белок L12. N-концевой домен имеет плотную упаковку и содержит α/β мотив. Четыре антипараллельных β-тряжа окружены с двух сторон тремя и четырьмя α-спиралями. C-концевой домен белка L10 образован длинной и гибкой C-концевой α-спиралью (спираль α8). Спираль α8 изгибается дважды в остатках Pro151 и Gly161 (нумерация по T. maritima), формируя три сегмента из 10 аминокислотных остатков. Каждый сегмент связывает один димер L12NTD, поэтому в области контакта белков L10 и L12 можно выделить три практически идентичных элемента (Diaconu et al., 2005). Между N- и C-концевым доменами белка L10 находится так называемый «центр вращения» (от английского “pivot point”), который располагается в начале неструктурированной области между спиралями α7 и α8. Благодаря этому «центру вращения» обеспечивается подвижность спирали α8 (C-концевой домен) с
димерами L12NTD относительно РНК-связывающего домена, необходимая для функциональной активности бокового L12-выступа. С помощью наложения структур белка L10 было показано, что смещение последнего C-концевого аминокислотного остатка может достигать 34 Å (Рис. 7Б) (Diaconu et al., 2005).

Рис. 7. (А) Пространственная структура рибосомного комплекса белка L10 с димерами N-концевого домена белка L12 из T. maritima, PDB код 1ZAW. (Б) Наложение двух кристаллических структур белка L10 по N-концевому домену, демонстрирующее движение C-концевого домена, PDB коды 1ZAX и 1ZAW. Для наилучшего представления убраны димеры L12NTD, желтой точкой обозначен «центр вращения». Голубым и темно-серым цветами окрашен белок L10, красным, зеленым и оранжевым – димеры L12NTD.

Место связывания белка L10 с рибосомой расположено на поверхности большой субчастицы рибосомы. Методом химического пробинги был определен основной участок связывания белка L10, который расположен в домене II 23S РНК и включает спирали H42-44 (нуклеотидные остатки 1030-1124, нумерация по E. coli) (Rosendahl and Douthwaite, 1993). Чтобы локализовать сайт связывания белка L10 с 23S pPHK было проведено наложение по консервативному РНК-связывающему домену известной
структуры бактериального белка L10 из T. maritima на структуру двух N-концевых α-спиралей белка P0, которая определена в составе 50S рибосомной субчастицы из архей Haloarcula marismortui (Ban et al., 2000; Diaconu et al., 2005). На основании этих данных обнаружено, что наибольшее количество контактов образуется между спиралями α1 и α2 белка L10 и спиралью H42 23S pРНК. Нуклеотидные остатки 1045-1047 (нумерация по E. coli) спирилы H42 расположены между N-концевыми частями спиралей α1 и α3, что хорошо согласуется с данными химического пробинга (Diaconu et al., 2005; Rosendahl and Douthwaite, 1993). Петля β2-α3 контактирует с вершиной спирали H42 (1106-1107 н. о., нумерация по E. coli). C-концевая часть тяжа β2 образует контакт с нуклеотидным остатком в положении 1086, а петля между β1-тяжом и спиралью α2 – c 1056-1057 н. о. (нумерация по E. coli). Стоит отметить, что большая часть контактов белка L10 с 23S pРНК приходится на сахарофосфатный остов pРНК. Возможно, пространственная укладка 23S pРНК играет ключевую роль в узнавании места связывания белка L10 (Diaconu et al., 2005).

Рис. 8. (A) Третичная структура фрагмента 23S pРНК из Deinococcus radiodurans (1042-1135 н. о.), PDB код 2ZJR. Вторичные структуры (B) фрагмента 23S pРНК из E. coli (1030-1124 н. о.); (B) фрагмента регуляторной области мРНК гена rplJ из E. coli (1538-1586 н. о.) (стартовый AUG кодон расположен в позиции 1720). (Г) Мотив «излом-поворот». Зеленым цветом выделены нуклеотидные остатки, с которыми связывается белок L10, голубым цветом обозначены нуклеотидные остатки, с которыми связывается белок L11, красным – консенсусная последовательность «излом-поворот». Черной рамкой выделены пары нуклеотидных остатков, необходимые для регуляции трансляции.
Гены бактериальных рибосомных белков L10 и L12 расположены в одном опероне. Рибосомный белок L10 в составе комплекса L10-L12 является трансляционным репрессором своего оперона и связывается со структурой мРНК выше инициаторного кодона гена белка L10 (Climie and Friesen, 1987; Johnsen et al., 1982).

При анализе рРНК в кристаллической структуре большой субчастицы рибосомы из Deinococcus radiodurans в районе ГТФазного центра был выделен консенсусный мотив в спирали H42 23S рРНК, называемый «излом-поворот» (от английского “kink-turn motif”), который, возможно, вносит основной вклад в узнавание рРНК белком L10 (Рис. 8) (Harms et al., 2001; Klein et al., 2001). мРНК гена rplJ из E. coli потенциально может содержать такой же мотив (Рис. 8В) (Iben and Draper, 2008).

Предполагается, что мРНК и рРНК взаимодействуют с белком L10 схожим образом. Наличие сайта связывания белка L10 в мРНК и рРНК позволяет сравнить участки связывания этих РНК с белком L10. Методом связывания на фильтрах были измерены константы связывания для каждой РНК. Установлено, что константа диссоциации для белка и мРНК равна 2.2×10^{-10} М, а для белка и рРНК – 3.2×10^{-10} М (Iben and Draper, 2008). Рибосомный белок L11 связывается с 23S рРНК рядом с сайтом связывания белка L10 (Рис. 8Б). Связывание белков L10 и L11 происходит кооперативно (Dijk et al., 1979). Кооперативный эффект может увеличивать сродство L10 к рРНК в 100 раз (Iben and Draper, 2008). Возможно, что кооперативное связывание L10 и L11 обусловлено конформационными изменениями в структуре рРНК (Diaconu et al., 2005). Несмотря на то, что в экспериментах in vitro мРНК и рРНК связывались с белком L10 с одинаковым сродством, 100-кратный кооперативный эффект связывания L10 и L11 с рРНК гарантирует, что рибосомы будут практически полностью заняты комплексом белков L10-L12 (Iben and Draper, 2008).

Рибосомный белок L11 является необходимым компонентом рибосомной 50S субчастицы и расположен в основании L12-выступа. Мутантные штаммы клеток Bacillus megaterium, лишенные белка L11, жизнеспособны, но их рост замедлен более чем в два раза по сравнению с клетками штамма дикого типа (Stark et al., 1980). Белок L11 выполняет схожую с белком L12 функцию на рибосоме – взаимодействует с факторами трансляции. Белок L11 участвует во взаимодействии рибосомы с факторами элонгации EF1A и EF2, с факторами терминации RF1 и RF2, способствует ассоциации субчастиц рибосомы, а также стимулирует гидролиз ГТФ (Kazemie, 1976; Schrier and Möller, 1975; Tate et al., 1984).
В настоящее время определены пространственные структуры полноразмерного белка L11 из *T. maritima* в свободном состоянии методом ЯМР в растворе (Рис. 9А) (Ilin *et al.*, 2005) и в комплексе с фрагментом 23S рРНК методом рентгеноструктурного анализа с разрешением 2.6 Å (Рис. 9Б) (Wimberly *et al.*, 1999), а также структура 50S субчастицы рибосомы из *D. radiodurans* в комплексе с тиострептоном, в которой визуализирован белок L11, с разрешением 3.3 Å (Рис. 9В) (Harms *et al.*, 2008).

Рибосомный белок L11 состоит из N- и C-концевых глобулярных доменов, которые соединены короткой перетяжкой. N-концевой домен белка L11 состоит из двух α-спиралей, которые расположены с вогнутой стороны трех-тяжевого антипараллельного β-листа. Спираль α1 имеет консервативный остаток пролина (Pro22, нумерация по *T. maritima*), с которым взаимодействуют антибиотики тиазольного класса. Перетяжка между доменами L11 образована консенсусным мотивом из трех аминокислотных остатков (Thr72-Pro73-Pro74). C-концевой домен содержит три плотноупакованных α-спирали и короткий параллельный двух-тяжевой β-лист. Структура этого домена имеет характерную особенность, а именно протяженную неупорядоченную петлю (84-96 а.о.). Эта петля вовлечена в РНК-белковое взаимодействие и подвержена конформационным изменениям при связывании рРНК (Ilin *et al.*, 2005; Wimberly *et al.*, 1999).
С помощью C-концевого домена белок L11 взаимодействует с большой рибосомной РНК (Рис. 9 Б, В). Методом связывания на фильтрах установлено, что константа диссоциации для белка и пРНК равна 1.2×10^{-9} М (Bausch et al., 2005), а методом фут-принтинга (footprinting) показано, что белок L11 защищает от расщепления рибонуклеазой T1 участок пРНК с 1052 по 1112 н. о. (нумерация по E. coli) (Schmidt et al., 1981). C-концевой домен белка L11 (L11CTD) связывается с малым желобком 23S пРНК, образованным спиралями H43-44. РНК-связывающая поверхность белка L11 образована спиралью α5, N-концевой частью спирали α3, а также петлями 6 (между спиралью α3 и β4-тяжом) и 7 (между спирами α4 и α5), которые расположены по бокам спирали α5. Спираль α5 расположена вдоль малого желобка 23S пРНК, образуя наибольшее количество контактов. Петли 6 и 7 контактируют с сахарофосфатным остовом малого желобка. Обе эти петли не упорядочены, когда не контактируют с пРНК, но в комплексе с пРНК они приобретают упорядоченную структуру, которая идеально соответствует поверхности малого желобка (Wimberly et al., 1999). Больше половины водородных связей комплекса образовано между сахарофосфатным остовом пРНК и основной цепью L11CTD. Этот факт указывает на то, что пространственная укладка 23S пРНК играет основную роль в узнавании места связывания белком L11. С помощью биофизических экспериментов показано, что белок L11 стабилизирует третичную структуру пРНК посредством C-концевого домена (Xing and Draper, 1996).

N-концевой домен белка L11 (L11NTD) участвует во взаимодействии с факторами трансляции. Этот домен меняет свое положение относительно C-концевого домена в процессе функционирования рибосомы (Ilin et al., 2005). Также положение L11NTD изменяется при связывании с рибосомой. После связывания с пРНК происходит конформационная перестройка в структуре белка L11 и N-концевой домен смещается на 21° в сторону пРНК (Рис. 10) (Jonker et al., 2007).

Рибосомный комплекс белка L11 с 23S пРНК служит мишенью для тиазольного класса антибиотиков (Рис. 9В) (Thompson et al., 1979). При связывании с рибосомой тиострептон блокирует, а микрококцин – стимулирует гидролиз ГТФ на EF2 (Cundliffe et al., 1979). Основной сайт связывания тиострептона/микрококцина расположен в щели между спиралью α1 L11NTD и 1067/1095 участком пРНК. С помощью химического пробинга было показано, что нуклеотидные остатки A1067 и A1095 23S пРНК (нумерация по E. coli) необходимы для связывания тиострептона и микрококцина с рибосомой (Egebjerg et al., 1989). В N-концевом домене белка L11 остатки Pro22 и Pro23 спирали α1 (нумерация по E. coli) являются местом связывания тиострептона. После взаимодействия с антибиотиком N-концевой домен смещается еще на 26° в сторону пРНК по сравнению с
РНК-связанной конформацией (Рис. 10) (Jonker et al., 2007). Таким образом, антибиотик тиострептон блокирует функционально важные структурные перестройки L11 с помощью образования стабильного комплекса L11-РНК-тиострептон.

1.2. Белки эукариотического и архейного Р-выступа

Эукариотические и архейные рибосомы содержат боковой Р-выступ, структурная организация которого аналогична бактериальному L12-выступу. Экзогукиотический рибосомный Р-выступ образован двумя типами Р-белков и белком L12e. Р-белки являются эукариотическими аналогами бактериальных белков L10 и L12, а эукариотический белок L12e – аналог бактериального белка L11. Первый тип Р-белков содержит только один белок P0 (Uchiumi et al., 1987). Второй тип включает небольшие кислые белки P1/P2 размером около 11 кДа (van Agthoven et al., 1978). Р-белки образуют между собой пентамерный комплекс P0-P1/P2, в котором два гетеродимера P1/P2 связываются с белком P0. Эукариотический Р-выступ является необходимым компонентом рибосомы, а белок P0 жизненно важен для роста клеток (Santos and Ballesta, 1994). В С-концевой части рибосомного белка P0, как и у белков P1/P2, имеется высококонсервативный пептид, с помощью которого происходит взаимодействие рибосомы с факторами элонгации (Lalioti et al., 2002). Наличие белка P0 на рибосоме без белков P1/P2 обеспечивает базовый уровень синтеза полицидерлинана и гидролиза ГТФ (Ballesta and Remacha, 1996).

В археях Р-выступ состоит из рибосомных белков L11, P0 и P1. Архейные белки P0 и P1 по аминокислотной последовательности и размеру намного ближе к эукариотическим белкам P0 и P1/P2, чем к бактериальным аналогам (Maki et al., 2007).
Архейный P-выступ достаточно стабилен. Белки P0 и P1 образуют прочный белковый комплекс P0-P1, который, как и бактериальный комплекс L10-L12, не разрушается в 6 М мочевине при рН 4.6. При обработке большой субчастицы архейной рибосомы высокой концентрацией NH₄Cl и этанолом белок P0 не удаляется полностью с рибосомы, поскольку взаимодействует с рРНК с большим сродством, чем белок L10 (Casiano et al., 1990).

Эукариотические белки P1/P2 между собой очень похожи, как функционально, так и структурно. В разных видах организмов присутствует разное количество групп и подгрупп белков P1/P2 (Bailey-Serres et al., 1997; Szick et al., 1998). В отличие от бактериального белка L12 из E. coli, который представлен на рибосоме еще дополнительной N-ацетилированной копией, каждый тип белка P1/P2 кодируется отдельным геном (Szick et al., 1998). В растворе P1/P2 белки находятся в виде стабильного димера. С помощью двухгибридной системы было показано in vivo, что белки P1 и P2 высших эукариот могут образовывать стабильный гетеродимер P1-P2, а также менее стабильный гомодимер P2-P2 (Tchórzewski et al., 2000a). Гомодимер P2-P2 не может напрямую связываться с белком P0. После образования прекомплекса эукариотических белков P0-P1, происходит диссоциация гомодимера P2-P2 на мономеры. Свободный мономер P2 взаимодействует с P1, который в составе прекомплекса P0-P1, формируя гетеродимер P1-P2 (Grela et al., 2008a). Это связано с тем, что стабильность гетеродимера (измеренная как свободная энергия разворачивания) значительно выше, чем стабильность гомодимера, поэтому взаимодействие белка P2 с P1 сильнее, чем с белком P2 (Lee et al., 2010, 2012). У низших эукариот белки P1 и P2 образуют только гетеродимеры: канонические пары P1α-P2β и P1β-P2α и неканонические P1α-P2α и P1β-P2β (Nusspaumer et al., 2000; Tchórzewski et al., 2000b).

Архейный белок P1 кодируется только одним геном в археях и не подвержен модификациям, несмотря на то, что имеет структурное сходство с эукариотическими белками P1/P2. В растворе, а также на рибосоме белок P1 находится в виде димера (Casiano et al., 1990).

Структурно архейный P1 и эукариотический P1/P2 можно разделить на N- и C-концевой домены и гибкую перетяжку, которая соединяет оба домена. N-концевой домен ответственен за димеризацию этих белков, а также за связывание с рибосомной субчастицей через белок P0 (Lee et al., 2012; Naganuma et al., 2010). Архейный белок P1 связывается N-концевым доменом с C-концевым доменом белка P0 только в виде димера (Casiano and Traut, 1991).
В процессе биосинтеза белка архейный белок P1 выполняет функцию доставки факторов трансляции на рибосому. С-концевая часть белка напрямую взаимодействует с элонгационными факторами aEF2 и aEF1α, а также с фактором инициации aIF5B, который является гомологом бактериального фактора инициации IF2 (Nomura et al., 2012, 2006). Методом поверхностного резонанса плазмонов показано, что белок P1 связывает фактор элонгации aEF2 независимо от того, находится ли фактор в комплексе с ГТФ или ГДФ. Более того, белковый комплекс P0•(P1)₆ способен связывать несколько молекул aEF2, что способствует увеличению скорости доставки aEF2 в ГТФаза-связывающий центр и высокой скорости гидролиза ГТФ (Nomura et al., 2012).

Первые десять аминокислотных остатков эукариотического белка P1/P2 важны для гетеродимеризации и образования пентамерного комплекса (Naganuma et al., 2007). Перетяжка белка образована преимущественно аминокислотными остатками Ala, Gly и Pro. С-концевой домен белка P1/P2 ответственен за взаимодействие рибосомы с факторами трансляции и является мишенью для рибосомо-инактивирующих белков (Lee et al., 2013; Uchiumi et al., 1990). Этот домен содержит большое количество гидрофобных аминокислотных остатков и включает в себя высококонсервативный пептид EESDDDMGFGLFD. Фосфорилирование большинства P1/P2-белков происходит по остатку серина, который входит в состав этого пептида (Ballesta et al., 1999). Исключение составляют белки рода Tetrachymera, в которых данный остаток серина отсутствует.

В настоящее время определена пространственная структура полноразмерного гетеродимера P1-P2 из Homo sapiens методом ЯМР в растворе (Рис. 11 А) (Lee et al., 2013).

N-концевые домены белков P1 и P2 состоят их четырех α-спиралей и достаточно компактны (Рис. 11А, 13). Гетеродимер N-концевых доменов P1 и P2 ассиметричен и образован за счет высококонсервативных гидрофобных остатков спиралей α1, α2 и α4 белков P1 и P2. Основной контакт расположен между спиралями α1 белков P1 и P2. С-концевая часть не имеет определенной структуры. В результате C-концевой «хвост» димера P1-P2 может быть на расстоянии до 125 Å от N-концевого домена (Рис. 11Б). Стоит отметить, что расстояние от N-концевых доменов P1-P2 до сарцин-рициновой петли составляет около 80 Å. Благодаря вытянутому С-концевому «хвосту» P1-P2 факторы элонгации трансляции, возможно, могут беспрепятственно быть доставлены в ГТФаза-связывающий центр (Lee et al., 2013).
Рис. 11. (А) Пространственная структура полноразмерного гетеродимера P1-P2 из Homo sapiens, PDB код 4ВЕН. (Б) Наложение по N-концевым доменам 20 пространственных структур гетеродимера P1-P2. Рисунок с небольшими изменениями взят из работы Lee et al., 2013. Зеленым цветом окрашен белок P2, серым – белок P1.

Структура полноразмерного архейного белка P1 не известна, но определены кристаллические структуры димеров N-концевого домена белка P1 (в комплексе с белком P0; разрешение 2.1 Å) (Рис. 16А) и C-концевого домена белка P1 (в комплексе с фактором элонгации aEF1α; разрешение 2.3 Å) (Рис. 12) из Pyrococcus horicosii (Ito et al., 2014; Naganuma et al., 2010).

При 7. Пространственная структура фактора элонгации aEF1α в комплексе с ГДФ и C-концевым доменом белка P1 из Pyrococcus horicosii, PDB код 3ВY9. Серым цветом выделен aEF1α, розовым – молекула ГДФ, зеленым – C-концевой домен белка P1.
N-концевой домен архейного белка P1 образован четырьмя α-спиралями. Димеризация белка P1 происходит благодаря гидрофобным взаимодействиям между спиралями α1 и α2 двух мономеров, а формирование симметричного P1-P1 димера — за счет антипараллельной укладки спиралей α1-α1’ и α2-α2’ (Рис. 13). C-концевой домен образован 20 аминокислотными остатками. В отличие от компактного C-концевого домена бактериального L12, C-концевой домен архейного P1 (P1CTD) неструктурирован в свободном от фактора элонгации состоянии (Grela et al., 2008b), но при взаимодействии с трансляционными факторами P1CTD структурируется с образованием длинной α-спирали (Рис. 12). Именно P1CTD контактирует напрямую с факторами трансляции. В структуре архейного комплекса P1CTD•aEF1α•ГДФ спираль P1CTD расположена между доменами 1 и 3 aEF1α в 20 Å от ГТФ/ГДФ-связывающего сайта и выполняет роль перемычки между этими доменами (Рис. 12). Этот контакт стабилизируется протяженной сетью гидрофобных взаимодействий.

Рис. 13. Структурное сравнение способов димеризации эукариотических белков P1/P2, архейного белка P1 и бактериального белка L12. Рисунок с небольшими изменениями взят из работы Lee et al., 2010. Коралловым цветом окрашен белок P2, красным — белок P1; бирюзовым и зеленым цветом окрашены мономеры белка P1, бледно-розовым — одна из спиралей (α8, α9 или α10) P0CTD; рыжим и желтым цветом окрашены мономеры L12, фиолетовым — часть спирали L10.

Структуры архейного димера N-концевого домена P1 и эукариотического гетеродимера N-концевых доменов P1 и P2 имеют схожую укладку полипептидной цепи в отличие от бактериального димера N-концевого домена белка L12 (Рис. 13). Основные отличия в структурах димера P1NTD и гетеродимера P1NTD-P2NTD заключены в спирали α4. Спираль α4 P1NTD в структуре архейного комплекса P0•(P1)₆ принимает «открытую» конформацию, которая позволяет связываться с короткой спиралью белка P0. Спираль α4
в эукариотическом димере P1NTD-P2NTD принимает «закрытую» конформацию, но, вполне вероятно, эта спираль может принимать и «открытую» конформацию, и в таком состоянии способствует связыванию гетеродимера P1-P2 с C-концевой частью эукариотического белка P0 (Lee et al., 2012).

Поверхность спиräли α3 эукариотического белка P1 сильно гидрофобна, тогда как поверхность спиräли α3 белка P2, наоборот, гидрофильна. Обе спиräли α3 белков P1 и P2 не участвуют в процессе димеризации (Lee et al., 2012). Методом флуоресценции было показано, что Trp43 (нумерация по S. cerevisiae) спиräли α3 белка P1 одного гетеродимера находится в области контакта с белком P1 другого гетеродимера в дрожжевом P1/P2-выступе. Замена этого консервативного гидрофобного остатка белка P1 на соответствующий консервативный заряженный остаток белка P2 приводит к разрушению взаимодействия между гетеродимерами и препятствует образованию комплекса P0-P1/P2 (Grela et al., 2010). Ассиметричность гетеродимера P1-P2 и данные о спиräли α3 предполагают, что гетеродимеры P1-P2 в пентамерном комплексе располагаются в последовательности P2-P1:P1-P2 (Рис. 14А). На основании топологии димеров была предложена модель структурной организации пентамерного эукариотического комплекса (Рис. 14Б) (Lee et al., 2012).

В архейных рибосомах белки P0 и P1 присутствуют в виде комплекса P0-P1 в соотношении 1 : 4 или 1 : 6 как было показано с помощью масс-спектрометрии (Gordiyenko et al., 2010; Maki et al., 2007). Рибосомы гипертермофильных архей содержат только гептамерный комплекс P0•(P1)₆, тогда как в мезофильных археях было обнаружено две популяции рибосом, которые содержали пентамерный или гептамерный комплекс P0-P1. Соотношение рибосом с пентамерным и гептамерным комплексом изменяется в
процессе жизненного роста клеток. На начальной стадии роста клеток рибосомы содержат преимущественно пентамерный комплекс P0•(P1)₄. При переходе клеток в стационарную фазу роста изменяется соотношение белков P0 и P1, и преобладают рибосомы с гептамерным комплексом P0•(P1)₆ (Gordiyenko et al., 2010).

Мутантная форма архейного белка P0, в которой удалены специфичные для архей и эукариот 58 C-концевых аминокислотных остатков, способна связывать три димера белка P1, образуя гептамерный комплекс. Удаление 80 C-концевых аминокислотных остатков архейного белка P0 приводит к тому, что с такой мутантной формой белка P0 связывается только четыре копии белка P1, то есть образуется пентамерный комплекс. Лишенный 105 C-концевых аминокислотных остатков белок P0 способен связывать только один димер белка P1 (Maki et al., 2007; Nomura et al., 2006). Архейные рибосомы, содержащие тримерный комплекс P0•(P1)₂, имеют активность гидролиза ГТФ и синтеза полифенилаланина на уровне 55% от активности рибосом с гептамерным комплексом. Активность рибосом с пентамерным комплексом составила около 95%. Таким образом, в гибридной рибосоме пентамерный и гептамерный комплексы P0-P1 не сильно отличаются по доступности для факторов трансляции. Возможно, третий димер архейного белка P1 необходим для полноценного функционирования архейной рибосомы при температуре близкой к оптимальной температуре роста (например, для P. horicoshii составляет 95°C) (Maki et al., 2007).

Эукариотический белок P0 содержит два структурных элемента, с которыми связываются два P1-P2 гетеродимера (Baba et al., 2013). С помощью удаления C-концевых аминокислотных остатков было показано, что первый сайт связывания гетеродимера P1-P2 расположен в районе 205-230 а.о., а второй сайт – 240-255 а.о. (нумерация по Bombyx mori) (Baba et al., 2013; Hagiya et al., 2005).

Эукариотический и архейный рибосомные белки P0 подобно бактериальному белку L₁₀ являются посредниками между эукариотическим P1-P2 / архейным P1 и рибосомой. Белки P0 состоят из трех доменов (Рис. 15). Консервативный среди всех доменов жизни N-концевой домен 1 белка P0 является РНК-связывающим доменом, который ответственен за прикрепление рибосомного комплекса P0-P1 или P0-P1/P2 к большой субчастице рибосомы. Специфичный второй домен обнаружен только в составе белков P0 эукариот и архей и отсутствует в бактериальном аналоге белке L₁₀ (Kravchenko et al., 2010; Santos et al., 2004). C-концевой спиральный домен служит местом посадки для двух гетеродимеров P1-P2 в случае эукариотического P-выступа и двух или трех гомодимеров P1 в случае архейного P-выступа.
Рис. 15. Схема последовательностей полипептидных цепей рибосомных белков L10 и P0. Голубым цветом окрашен N-концевой домен 1, розовым – домен 2, зеленым – C-концевой домен. Белым прямоугольником со сплошной линией обозначена дополнительная аминокислотная последовательность термофильных бактериальных белков L10.

В 2010 году были определены кристаллические структуры архейного рибосомного комплекса белка P0 с димерами N-концевого домена белка P1 из P. horicoshii (разрешение 2.1 Å; Рис. 16А) и двухдоменного N-концевого фрагмента архейного рибосомного белка P0 (P0NTF) из Methanococcus jannaschii (разрешение 1.6 Å; Рис. 16Б) (Kravchenko et al., 2010; Naganuma et al., 2010).

N-концевой домен 1 архейного белка P0 состоит из двух частей, которые соответствуют аминокислотным остаткам 1-111 и 192-206 (Рис. 16 А, Б) (нумерация по M. jannaschii). Этот домен имеет α/β-структуру, содержащую пяти-тяжевой антипараллельный β-лист, окруженный с одной стороны тремя, с другой стороны – двумя α-спиралями (Kravchenko et al., 2010; Naganuma et al., 2010). Второй домен белка P0 является вставкой в первый и содержит аминокислотные остатки 115-188 (Рис. 16Б). Домен 2 состоит из двух-тяжевого и трех-тяжевого антипараллельных β-листов, которые расположены под прямым углом друг к другу, и двух α-спиралей между ними. Структура домена стабилизована протяженными гидрофобными взаимодействиями. Оба домена соединены перетяжкой, которая состоит из двух противоположно направленных β-тяжей. Аминокислотные остатки Ala114 и Ile189 в области перетяжки обеспечивают подвижность домена 2 относительно домена 1. Наложение структур двух молекул белка P0NTF из ассиметричной части ячейки по домену 1 демонстрирует эту подвижность (Рис. 16В). Смещение остатка 155, находящегося на вершине домена 2, достигает 12.8 Å (Kravchenko et al., 2010). C-концевой домен белка P0 в два раза длиннее (Рис. 15) и отличается по структуре от бактериального L10CTD (Рис. 7А и 16А). Он содержит три независимые α-спирали, соединенные короткой перетяжкой из 6 а. о. Спираль α8 содержит с 209 по 231 а. о., спираль α9 – с 238 по 257 а. о., а спираль α10 – с 264 по 282 а. о. (нумерация по P. horicoshii). С каждой спиралью C-концевого домена белка P0
связывается один димер белка P1. C-концевой домен подвижен, и его смещение может достигать 30° (Naganuma et al., 2010).

Рис. 16. (А) Пространственная структура рибосомного комплекса белка P0 с димерами N-концевого домена белка P1 из P. horicoshii, PDB код 3A1Y. Розовым овалом выделено место, где должен располагаться домен 2 белка P0. Голубым цветом окрашен белок P0, красным, зеленым и рыжим – димеры N-концевого домена белка P1. (Б) Пространственная структура двухдоменного N-концевого фрагмента рибосомного белка P0 из M. jannaschii, PDB код 3JSY. Красным цветом окрашены α-спиräли, голубым – β-тяжи. (В) Сравнение структур двух молекул P0NTF из ассиметричной части ячейки с помощью наложения по первому домену, PDB код 3JSY.

Пространственная структура изолированного эукариотического белка P0 не определена. На основании высокой гомологии архейного и эукариотического белков P0 и кристаллической структуры архейного белка P0 в комплексе с димерами N-концевых доменов белка P1 (Рис. 16А) была предсказана модель структуры эукариотического белка P0 в комплексе с N-концевыми доменами гетеродимера P1-P2 (Рис. 17) (Choi et al., 2015).
В данной модели была предсказана структура только N-концевого домена 1 и C-концевого домена белка P0. Структура домена 2 эукариотического P0 остается неизвестной.

Рис. 17. Модель структуры N-концевого домена 1 и C-концевого домена эукариотического белка P0 в комплексе с N-концевыми доменами гетеродимеров белков P1 и P2. Зеленым цветом окрашен белок P0, светло-розовым – P1, красным – P2. Рисунок с небольшими изменениями взят из работы Choi et al., 2015.

Участок эукариотического и архейного белков P0, соответствующий домену 2, обеспечивает взаимодействие рибосомы с эукариотическими или архейными факторами трансляции, но не с бактериальными. Удаление этого домена приводит к снижению до 40% фактор-зависимого гидролиза ГТФ и уровня синтеза полифенилаланина гибридными рибосомами E. coli с эукариотическими и архейными факторами трансляции (Mochizuki et al., 2012; Naganuma et al., 2010). Антибиотик сордарин связывается с доменом 2 эукариотического белка P0, предотвращая переход рибосомы из пре-eEF2•ГТФ состояния в пост-eEF2•ГТФ состояние до гидролиза ГТФ, а его удаление приводит к уменьшению связывания eEF2•ГТФ с рибосомой (Santos et al., 2004). Это предполагает, что домен 2 эукариотического белка P0 нужен для взаимодействия с eEF2•ГТФ.

N-концевой домен 1 архейного белка P0 контактирует со спиралью H42 домена II 23S pРНК подобно связыванию бактериального белка L10 с 23S pРНК, причем основной контакт между белком P0 и pРНК также приходится на сахаро-фосфатный остов РНК (мотив «излом-поворот»; см. Рис. 8А) (Diaconu et al., 2005).

Первые 20 аминокислотных остатков эукариотического белка P0 необходимы для связывания с 26/28S pРНК (Hagiya et al., 2005). Между 40 и 70 а. о. располагается аргинин-богатый участок, который обеспечивает дополнительный контакт с pРНК (Shimizu et al., 2002). Основное место связывания эукариотического белка P0 расположено в районе 1855-1861 и 1920-1922 н. о. (нумерация по 28S pРНК крысы) как было показано.
методами химического пробинга и фут-принтинга. В комплексе с белками P1/P2 повышается сродство белка P0 к pPHK (Uchiumi and Kominami, 1997). Наиболее вероятно, что P1/P2 выполняют дополнительную функцию модулятора при связывании белка P0 с рибосомой.

Эукариотический рибосомный белок L12е является функциональным аналогом архейного и бактериального белка L11. В клетках дрожжей S. cerevisiae белок L12е кодируется двумя генами, rpL12A и rpL12B, которые продуцируют идентичные полипептиды. Удаление обоих генов белка L12е сильно влияет на рост клеток, но клетки остаются жизнеспособными (Briones et al., 1998). С помощью химического сшивания соседних молекул показано, что белок L12е взаимодействует с эукариотическими факторами элонгации eEF1α и eEF2 (Uchiumi et al., 1986).

Белок L12е связывается с 26/28S pPHK в участке, эквивалентном участку связывания бактериального/архейного белков L11 на 23S pPHK. Белок L12е из крысы защищает около 60 н. о. 28S pPHK от расщепления рибонуклеазой T1, связанная с участком 1766-1825 н. о., а дрожжевой L12е защищает от расщепления участок 1222-1283 н. о. 26S pPHK (El-Baradi et al., 1987). Если участок связывания белка L11 в рибосоме из E. coli заменить на участок связывания белка L12е из дрожжей, то с такой гибридной рибосомой могут связаться как эукариотический L12е, так и бактериальный белок L11. Такая гибридная рибосома поддерживает гидролиз ГТФ с помощью бактериального фактора элонгации EF2 (Thompson et al., 1993). Наиболее вероятно, что несмотря на консервативные PHK-белковые взаимодействия pPHK и белков L11 и L12е, эукариотические белок-белковые взаимодействия между белком L12е и факторами трансляции отличаются от аналогичных взаимодействий в бактериях (García-Marcos et al., 2007).

Стоит заметить, что до сих пор не определена пространственная структура изолированного эукариотического белка L12е. Известна только структура L12е в составе дрожжевой рибосомы в виде полиаланиновой цепи (Рис. 19Б) (Ben-Shem et al., 2011).

Архейный белок L11 гомологичен бактериальному белку L11 (степень гомологии белков L11 из E. coli и Sulfolobus solfataricus равна 50%) (Casiano and Traut, 1991). В настоящее время пространственная структура архейного белка L11 частично визуализирована только в составе 50S субчастицы рибосомы из H. marismortui (Рис. 19В) (Gabdulkhakov et al., 2013). Белок L11 состоит из двух доменов, соединенных короткой перетяжкой. Из-за плохого качества электронной плотности в районе N-концевого домена детали структуры этого домена плохо различимы. Компактный L11CTD образован пятью α-спиралами (Gabdulkhakov et al., 2013).
Архейный L11 посредством C-концевого домена связывается со спиралями H43-44 домена II 23S pРНК. Сайты связывания архейных P0 и L11 расположены в pРНК рядом. Важно отметить, что архейный белок L11 стимулирует связывание архейного P0 с pРНК только при высоких температурах (70°C), тогда как при низких температурах (37°C) стимулирования не наблюдается (Shcherbakov et al., 2006). РНК-связывающая поверхность белка L11 образована спиралью α5 и петлями α3-α4 и α4-α5, которые расположены по бокам спирали α5. Спираль α5 C-концевого домена образует протяженную сеть взаимодействий с 23S pРНК, располагаясь вдоль малого желобка pРНК (Gabdulkhakov et al., 2013).

N-концевой домен архейного белка L11 способствует доставке факторов элонгации и терминации транскрипции в ГТФаза-связывающий центр архейной рибосомы. Было показано, что архейная рибосома воспринимает и пептидным антибиотикам тиострептону и микрококцину. Наиболее вероятно, что архейный белок L11 может быть мишенью для данного класса антибиотиков (Beauclerk et al., 1985).

2. Взаимозаменяемость бокового выступа бактерий, архей и эукариот

Впервые активную гибридную бактериальную рибосому из E. coli с эукариотическим P-выступом из крысы удалось получить в лаборатории Hachimori (Uchiumi et al., 1999). Замена L12-выступа на рибосоме E. coli на эукариотический P-выступ изменяет специфичность связывания бактериального EF2 на эукариотический eEF2 и стимулирует ГТФазную активность последнего. Уровень гидролиза ГТФ на eEF2 в гибридной рибосоме сопоставим с уровнем гидролиза ГТФ на eEF2 в эукариотической
80S рибосоме (Hagiya et al., 2005; Nomura et al., 2006; Uchiumi et al., 1999). При этом активность гибридной рибосомы при синтезе полифенилаланина в присутствии эукариотических факторов элонгации eEF1α и eEF2 находится на том же уровне, как для эукариотической рибосомы (Hagiya et al., 2005; Nomura et al., 2006). Гибридная рибосома становится частично невосприимчивой к антибиотику тиострептону по сравнению с интактной рибосомой E. coli (Uchiumi et al., 1999).

Архейные белки P-выступа, как и их эукариотические гомологи, способны замещать бактериальные белки L12-выступа (Nomura et al., 2006). Такая замена приводит к тому, что реконструированная гибридная рибосома становится доступной как для архейных факторов элонгации, так и для эукариотических, так не для бактериальных факторов элонгации. Активность гидролиза ГТФ и синтеза полиформилаланина гибридной рибосомы, содержащей архейные белки бокового выступа, в присутствии эукариотических факторов элонгации сопоставима с таковыми для гибридной рибосомы, в которой бактериальный L12-выступ заменен на эукариотический аналог. Стоит отметить, что синтез полиформилаланина и ГТФазная активность гибридной рибосомы с архейным P-выступом одинаковы с эукариотическими и архейными факторами элонгации (Nomura et al., 2006).

Белки L12-выступа митохондрий человека имеют высокую степень гомологии с соответствующими бактериальными белками. L12-выступ митохондрий способен заменить аналогичный выступ на рибосоме E. coli с образованием функционально активной гибридной рибосомы (Han et al., 2011). Получившаяся гибридная рибосома с митохондриальным L12-выступом имеет высокую активность синтеза полиформилаланина в присутствии бактериальных или митохондриальных факторов элонгации.

Таким образом, с помощью этих экспериментов была продемонстрирована ключевая роль белков L12/P-выступа в специфическом узнавании трансляционных факторов. L10-L12-подобный комплекс, но не белки L11 и L12e, ответственен за специфическое взаимодействия между рибосомой и факторами трансляции. Важно отметить, что изменение в специфичном узнавании факторов элонгации, вызванное замещением белков бокового выступа на их гомологи на рибосоме, сопровождается изменениями в структуре участков 23S/28S рРНК в области сарцин-рициновой петли и спиралей H43-44 (Uchiumi et al., 2002a).
3. Кристаллографические исследования L12/P-выступа в составе рибосом

С развитием криоэлектронной микроскопии и компьютерного программного обеспечения для трехмерной реконструкции структуры стало возможно исследование не только морфологии рибосом, но и их внутренней структуры. Встраивание кристаллических структур бактериальных комплексов L10-L12NTD и L11-pРНК в структуры бактериальных рибосом, полученные методом криоэлектронной микроскопии, позволило на молекулярном уровне различить конформационные перестройки рибосомы в области L12-выступа при взаимодействии с факторами трансляции в процессе трансляционного цикла (Diaconu et al., 2005).

Использование рентгеноструктурного анализа открыло возможность определения не только важных морфологических деталей рибосомы, но и внутренней структуры рибосомы, третичных структур рибосомных РНК в составе рибосомы, расположения и структур рибосомных белков. Первые кристаллы рибосом из E. coli, Bacillus stearothermophilus, Thermus thermophilus и H. marismortui, пригодные для рентгеноструктурного анализа, были получены в конце 1980-х годов (Glotz et al., 1987; Trakhanov et al., 1989; Yonath and Wittmann, 1988). Позднее удалось получить кристаллы большой субчастицы архейной рибосомы из H. marismortui, которые отражали рентгеновские лучи с разрешением 2.9 Å (Evers et al., 1994), и малой субчастицы бактериальной рибосомы из T. thermophilus, отражавшие рентгеновские лучи с разрешением 3.5 Å (Yonath et al., 1998).

В 2000 году была определена кристаллическая структура 50S субчастицы рибосомы из археи H. marismortui с разрешением 2.4 Å (Ban et al., 2000). Эта структура содержала 2711 из 2923 нуклеотидных остатков 23S рРНК, все 122 н. о. 5S рРНК и структуры для 27 из 31 рибосомных белков (Рис. 18А). Электронная плотность для белков L1, L11, P0 и P1 отсутствовала, хотя ранее они были локализованы в составе рибосомы с помощью электронной микроскопии и рентгеноструктурного анализа при низком разрешении (Ban et al., 1999). В кристаллических структурах целой рибосомы из бактерии T. thermophilus, определенной с разрешением 5.5 Å, и большой субчастицы рибосомы из бактерии D. radiodurans, определенной с разрешением 3.1 Å, удалось визуализировать только белок L11 (Harms et al., 2001; Yusupov et al., 2001).
Рис. 18. (А) Кристаллическая структура 50S субчастицы рибосомы из *H. marismortui*, PDB код 1JJ2; (Б) эта же структура после переуточнения в 2013 году, PDB код 4HUB. Серым цветом окрашена 23S pPHK, розовым цветом – 5S pPHK, желтым цветом – рибосомные белки.

При переуточнении структуры 50S субчастицы архейной рибосомы из *H. marismortui* с высоким разрешением удалось вписать в карту электронной плотности C-концевой домен белка L11, используя для построения кристаллическую структуру бактериального L11 в комплексе с фрагментом 23S pPHK, а также две N-концевых спирали белка P0 (Klein et al., 2004). Добавление комплекса, связанного с растущим полипептидом, к 50S субчастице рибосомы из *H. marismortui* помогло частично стабилизировать участок рибосомы в районе P-выступа (Kavran and Steitz, 2007). В данной структуре были визуализированы N-концевой домен 1 белка P0, N-концевой домен белка L11 и ранее определенные структуры C-концевого домена L11 и спирами H42-44 23S pPHK. Поскольку электронная плотность для домена 1 белка P0 была низкого качества и отсутствовала для домена 2, а также в качестве модели использовалась структура бактериального белка L10, аминокислотные остатки 190-212 были ошибочно определены как 110-132 α. о. белка P0 (Kravchenko et al., 2010).

В 2009 году в составе 70S бактериальной рибосомы в комплексе с EF2 из *T. thermophilus* была определена структура L12-выступа (Рис. 19А) (Gao et al., 2009). Фактор элонгации EF2 напрямую взаимодействует с L11 и C-концевым доменом L12. Из-за низкого качества электронной плотности в районе бокового выступа структура белкового комплекса L10-L12 была определена как полиаланиновая цепь. Спираль α8 белка L10 изгибаются по сравнению с ее положением в структуре изолированного комплекса L10-L12NTD, позволяя C-концевому домену L12CTD взаимодействовать и с
N-концевым доменом L11, и с G’-доменом EF2. В свою очередь N-концевой домен L11 вместе с нуклеотидными остатками 1067 и 1095 23S рРНК взаимодействует с доменом V фактора элонгации EF2 (Gao et al., 2009).

В составе 80S эукариотической рибосомы из S. cerevisiae был частично визуализирован Р-выступ (Рис. 19Б) (Ben-Shem et al., 2011). Белки этого выступа удалось вписать в карту электронной плотности только в виде полиаланиновой цепи. Исключение составил консервативный N-концевой РНК-связывающий домен 1 белка P0, структура которого была определена полностью. Общая укладка P0NTD совпадает с укладками N-концевых доменов бактериального L10 и архейного P0.

Найболее полную структуру архейного Р-выступа удалось определить при переуточении структуры 50S субчастицы рибосомы из археи H. marismortui в 2013 году (Рис. 18Б и 19В) (Gabdulkhakov et al., 2013). В результате переуточения была визуализирована только Р-выступ, но и некоторые рибосомные компоненты, структура которых не была известна (например, специфический для архей белок LX). Уточнение большой субчастицы позволило интерпретировать электронную плотность для приблизительно 2/3 белка P0 (C-концевой домен в виде полиаланиновой цепи) и один димер N-концевого домена P1 (как полиаланиновая цепь), а также дополнить структуру белка L11 (Рис. 19В).

Заключение

Боковой L12/P-выступ играет ключевую роль во взаимодействии рибосомы с факторами трансляции. Структурная организация этого выступа подобна среди доменов жизни, несмотря на то, что входящие в его состав бактериальные белки имеют слабую гомологию с соответствующими архейными и эукариотическими белками.

За последнее десятилетие произошел огромный прорыв в определении пространственных структур рибосомы и изолированных белков бокового выступа, но до сих пор остаются пробелы в понимании взаимодействия белков L12/P-выступа между собой и с высокомолекулярной ртПНК. Определение структур белковых компонентов этого бокового выступа в комплексах с ртПНК поможет не только проанализировать область контактов между ними, но и понять некоторые детали функционирования рибосомы на молекулярном уровне.
Рис. 19. Пространственные структуры больших субчастиц рибосом. Крупным планом выделен рибосомный L12/P-выступ. (А) 50S субчастица в комплексе с EF2 в составе 70S бактериальной рибосомы из *T. thermophilus*, PDB код 2WRJ; (Б) 60S субчастица в составе 80S эукариотической рибосомы из *S. cerevisiae*, PDB код 4V88; (В) 50S субчастица архейной рибосомы из *H. marismortui*, PDB код 4HUB. Общий вид больших субчастиц рибосом: в серый цвет окрашена 23S рРНК, в розовый – 5S рРНК, в желтый – рибосомные белки, в красный – фактор элонгации EF2. На увеличенном изображении L12/P-выступа в серый цвет окрашена рРНК, в рыхий – L11, в синий – L10 и P0, в зеленый и желтый – димеры L12, P1 и P1/P2. NTD – N-концевой домен, CTD – C-концевой домен.
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1. Материалы

1.1. Химические материалы

1.1.1. Реактивы и ферменты

В работе были использованы следующие реактивы зарубежного производства:
tween 20 (Bio-Rad, США); β-меркаптоэтанол (Ferak, Германия); бромистый этидий, ПЭГ 600, ПЭГ 4000, ПЭГ 8000 (Fluka, Швейцария); трис, какодилат натрия, дезоксирибонуклеаза I, Pipes, диметилсульфоксид, ИПТГ, X-gal, дезоксирибонуклеозидтрифосфаты, рибонуклеозидтрифосфаты, спермидин, тиострептон (Sigma, США); хлорид натрия, хлорид магния, ацетат магния, ацетат калия, гидроксид натрия, гидроксид натрия, ЭДТА, Hepes, акриламид, N,N'-метилен-бис-акриламид (GERBU, Германия); хлорид кальция, хлорид марганца, ацетат натрия, тетрациклин (Merck, Германия); агар, триптон, дрожжевой экстракт, мочевина, сульфат аммония (Panreac, Испания); агароза (Promega, США); бромфеноловый синий, ксиленцианол, β-аланин, ТЭМЕД, ДТТ, сахароза (Reanal, Венгрия); TCEP, CTAB, ДСН, кумасси G250, толуидиновый синий, персульфат аммония, метиленовый синий, PMSF (Serva, Германия).

И отечественного производства: канамицин, ампициллин (Биохимик, Россия); этанол, борная кислота, ацетон, хлороформ, изоамиловый спирт, изопропиловый спирт, соляная кислота (Реахим, Россия); фенол, глицерин, “ледяная” уксусная кислота (Хеликон, Россия).

Для генно-инженерных работ использовались ферменты T4 ДНК-лигаза, T4 РНК-лигаза (Fermentas, Литва); TaqSE ДНК-полимераза (СибЭнзим, Россия); сайт-специфические эндонуклеазы рестрикции EheI (Fermentas, Литва), NarI (New England Biolabs, Великобритания), HindIII, Smal, XmaI (СибЭнзим, Россия); ДНК-маркеры (СибЭнзим, Россия); синтетические олигонуклеотиды-праймеры (Синтол, Россия); модифицированный олигонуклеотид 5'-P-GCGCAGCGAG-биотин-3' (Синтол, Россия).

1.1.2. Буферы

Буфер ТАЕ: 90 мМ трис-ацетат, рН 7.8; 5 мМ ЭДТА.
Буфер ТВ: 10 мМ Pipes; 15 мМ CaCl₂; 0.25 М KCl; 55 мМ MnCl₂, рН 7.0.
Буфер A: 0.1 М трис-HCl, рН 7.0; 0.1 М MgCl₂; 1 М NaCl; 1 мМ ДТГ.
Буфер Б: 0.1 М трис-НСl, рН 7.0; 1 М NaCl; 1.7 М сульфат аммония; 1 мМ ДТТ.
Буфер В: 0.1 М трис-НСl, рН 7.0; 20 мМ NaCl; 1 мМ ДТТ.
Буфер Г: 0.1 М трис-НСl, рН 7.0; 0.2 М NaCl; 1 мМ ДТТ.
Буфер Д: 10 мМ трис-НСl, рН 7.5; 50 мМ NaCl; 10 мМ MgСl₂; 1 мМ ДТТ.
Буфер Е: 50 мМ трис-НСl, рН 7.5; 0.1 М NaCl.
Буфер Ж: 0.1 М трис-НСl, рН 7.0; 100 М NaCl; 5 мМ MgСl₂; 1 мМ ДТТ.

1.1.3. Питательные среды
LB: 1% триптон; 0.5% дрожжевой экстракт; 1% NaCl, рН 7.5.
SOB: 2% триптон; 0.5% дрожжевой экстракт; 10 мМ NaCl; 2.5 мМ KCl; 10 мМ MgSO₄; 10 мМ MgСl₂, рН 7.5.

1.2. Биологические материалы
1.2.1. Бактериальные штаммы
Для генно-инженерных процедур использовали бактериальный штамм E. coli XL1-Blue (Stratagene, США) с генотипом recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F’ proAB lacP/Z ΔM15 Tn10 (Tet’)].
Для экспрессии рекомбинантных генов использовали штамм E. coli BL21(DE3) (Stratagene, США) с генотипом F dcm ompT hsdS(ryB- mB-) gal λ(DE3).

1.2.2. Плазмиды
pUBS520 (Km’, кодирует ген аргининовой тРНК, узнающей редкие для E.coli кодоны аргинина AGA и AGG) (Novagen, США);
pET11c MjaP0NTF (Ap’ lacI pBR322ori T7 promoter; фрагмент гена белка P0 из M. jannaschii клонирован в вектор pET11c);
pET11c MjaL11 (Ap’ lacI pBR322ori T7 promoter; ген белка L11 из M. jannaschii клонирован в вектор pET11c);
pUC18 (Ap’ lacZ pBR322ori) (ThermoScientific, США);
pMja23S-95.UC18 (Ap’ lacZ pBR322ori; фрагмент гена 23S рРНК из M. jannaschii длиной 95 н. о. клонирован в вектор pUC18).

1.3. Принадлежности
Для фильтрования растворов применялись ацетатноцеллюлозные фильтры Alltech (США) и Albet (Чешская республика). Для концентрирования препаратов белков, а также для перевода белка в другой буфер использовались концентраты Millipore 5000 MWCO®.
Amicon Ultra-4 и Millipore 5000 MWCO® Amicon Ultra-15 (Millipore corporation, США). Для забора образцов использовался набор автоматических пипеток (Gilson Pipetman, Франция). Для выделения ДНК использовали фирменные наборы – QIAquick® PCR Purification Kit, QIAquick® Gel-Extraction Kit, QIAquick® Spin Miniprep Kit, QIAquick® Plasmid Mega Kit (QIAGEN, Германия). В опытах по кристаллизации использовали набор растворов Natrix (Hampton Research, США), Classics I+II, ComPAS, JCSG-plus, Nucleix, PACT (QIAGEN, Германия), NucPro (Jena Bioscience, Германия), MemMeso, Morpheus, Structure, Stura (Molecular Dimensions, Великобритания); вакуумную смазку, стаканчики и силиконизированные покровные стеклышки (Hampton Research, США).

1.4. Приборы

В работе использовали хроматографические системы ÄKTA prime и ÄKTA basic (Amersham Pharmacia Biotech, Швеция); спектрофотометры NanoPhotometer™ P Class (IMPLEN, Германия) и Ultrospec 2100 Pro (Amersham Biosciences, Великобритания); термоциклер Gene Amp PCR System 2400 (Perkin Elmer, Сингапур); ультразвуковой дезинтегратор Sonic Dismembrator 550 (Fisher Scientific, США); комплекты оборудования для электрофореза Mini Protean II (Bio-Rad, США) и Minigel-Twin (BioMetra, Германия); источник питания Эльф-4 (Россия); низкоскоростные центрифуги J2-21 и BR-4 (Beckman, США), Eppendorf 5810 R и Mini spin (Eppendorf, Германия); высокоскоростная центрифуга TL-100 (Beckman, США); весы Scout Pro SPU601 и Adventurer Pro AV364C (Ohaus, США); ультрафиолетовый трансиллюминатор (Cole-Parmer, США); термостат для выращивания бактериальной культуры InnovaTM 4000 (Pegasus Scientific, США); термостат MLW UH (MLW, ГДР); автоклав (SANYO, Япония); рН-метр PB-11 (Sartorius, Германия).

2. Методы

2.1. Методы генной инженерии

2.1.1. Полимеразная цепная реакция

Фрагменты гена 23S рРНК из M. jannaschii амплифицировали при помощи полимеразной цепной реакции (ПЦР), матрицей служила плазмидная ДНК, содержащая фрагмент гена большой рибосомной РНК из M. jannaschii, длиной 95 н. о (Shcherbakov et al., 2006). Олигонуклеотиды-праймеры (Синтол, Россия), используемые в ПЦР, содержали на концах сайты узнавания для сайт-специфических эндонуклеаз рестрикции HindIII и XmaI для Mja23SpRHK(73), HindIII и NarI для Mja23SpRHK(74) и Mja23SpRHK(76) (сайты рестрикции подчеркнуты).
Прямой олигонуклеотид-праймер:
Mja23SpPHK(73), 5’–CTACTGCAAGCTTAAATACGACTCCTAGTAGTAAGACAGCGGGGAGG–3’
Mja23SpPHK(74), 5’–CTACTGCAAGCTTAAATACGACTCCTAGCCCTAAGACAGCGGGGAGG–3’
Mja23SpPHK(76), 5’–CTACTGCAAGCTTAAATACGACTCCTAGCCCTAAGACAGCGGGGAGG–3’

Обратный олигонуклеотид-праймер:
Mja23SpPHK(73), 5’–TCACAGTTCCCGGGTGCAGCTGTTACG–3’
Mja23SpPHK(74), 5’–TCACAGTTCCCGGGTGCAGCTGTTACG–3’
Mja23SpPHK(76), 5’–TCACAGTTCCCGGGTGCAGCTGTTACG–3’

ПЦР проводили в объеме 50 мкл. Реакционная смесь содержала 5 мкл 10-кратного ПЦР-буфера для TaqSE ДНК-полимеразы (СибЭнзим, Россия), смесь дезоксирибонуклеотидов (дАТФ, дЦТФ, дГТФ и дТТФ в концентрации 0.25 мМ каждого), праймеры (по 50 пмоль каждого), 20 нг плазмидной ДНК и 1 ед. активности TaqSE ДНК-полимеразы. ПЦР-реакции проводились в термоцикlero GeneAmp PCR System 2400 (PerkinElmer, Сингапур), с использованием следующей программы:

<table>
<thead>
<tr>
<th>Стадия</th>
<th>Длительность</th>
<th>Температура</th>
<th>Циклы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Начальная активация</td>
<td>2 мин</td>
<td>95°C</td>
<td>1</td>
</tr>
<tr>
<td>Денатурация</td>
<td>30 с</td>
<td>95°C</td>
<td>25</td>
</tr>
<tr>
<td>Отжиг</td>
<td>30 с</td>
<td>57°C</td>
<td>25</td>
</tr>
<tr>
<td>Элонгация</td>
<td>30 с</td>
<td>72°C</td>
<td>25</td>
</tr>
<tr>
<td>Удлинение</td>
<td>4 мин</td>
<td>72°C</td>
<td>1</td>
</tr>
<tr>
<td>Стоп</td>
<td>∞</td>
<td>4°C</td>
<td>1</td>
</tr>
</tbody>
</table>

Температуру отжига олигонуклеотидов определяли с помощью программы “Gene Runner 3.0” (Hastings Software, США). После окончания ПЦР содержимое реакционной смеси анализировали электрофорезом в 2% геле агарозы с использованием ДНК-маркеров.

2.1.2. Электрофорез ДНК в агарозном геле

Электрофорез ДНК в агарозном геле проводили в буфере TAE. Концентрация агарозы составляла 1-2% в зависимости от размера фрагмента ДНК.

Использовался буфер для нанесения образцов, содержащий 40 мМ трис, 32 мМ уксусной кислоты, 5 мМ ЭДТА, рН 8.0, 5% глицерина, 0.1% БФС, 0.1% ксиленцианола. К анализируемому образцу добавляли буфер для нанесения образцов (в объемном отношении 1:1 с образцом) и наносили в слоты геля.
Электрофорез проводили в пластинке геля при напряженности электрического поля 10 В/см. Для окрашивания ДНК добавляли водный раствор бромистого этидия в гель (1.5 мкг/мл). После электрофореза гель анализировали в ультрафиолетовом свете (256 нм).

2.1.3. Обработка фрагментов ДНК сайт-специфическими эндонуклеазами рестрикции
Продукты ПЦР и плазмидный вектор pET11с обрабатывали сначала сайт-специфической эндонуклеазой рестрикции HindIII, а затем или XmaI, или NarI. Реакцию рестрикции HindIII проводили в буфере W (СибЭнзим, Россия) в присутствии БСА (0.1 мг/мл; СибЭнзим, Россия). Реакцию рестрикции XmaI проводили в буфере Y (СибЭнзим, Россия) в присутствии БСА (0.1 мг/мл; СибЭнзим, Россия). Реакцию рестрикции NarI проводили в буфере G (New England Biolabs, Великобритания) в присутствии БСА (0.1 мг/мл; СибЭнзим, Россия). 1 мкг фрагмента ДНК обрабатывали 1 единицей активности фермента в течение 2 часов при температуре 37°C, а затем инактивировали действие фермента, прогревая реакционную смесь в течение 20 минут при температуре 65°C.

2.1.4. Очистка фрагментов ДНК
Все полученные фрагменты ДНК (после ПЦР или реакции рестрикции) очищали при помощи электрофореза с последующей элюцией из агарозного геля с использованием фирменного набора QIAquick® Gel-Extraction Kit в соответствии с рекомендациями фирмы-изготовителя.

2.1.5. Лигирование фрагментов ДНК
Лигирование фрагментов ДНК проводили в течение ночи при температуре 22°C в буфере для T4 ДНК-лигазы (Fermentas, Литва) в объеме 20 мкл. Лигазная смесь содержала вектор, ПЦР-фрагмент и 1 ед. активности T4 ДНК-лигазы. В одну реакцию добавляли 100 нг вектора, а количество ПЦР-фрагмента подбиралось таким образом, чтобы молярное соотношение вектор:ПЦР-фрагмент составило 1:5. Действие фермента инактивировали, прогревая реакционную смесь в течение 20 минут при температуре 65°C.

2.1.6. Получение компетентных клеток E. coli
Получение компетентных клеток с высокой эффективностью трансформации, а также трансформация плазмидной ДНК проводились согласно методике (Inoue et al., 1990) с применением хлористого марганца и диметилсульфоксида. Культуру клеток
выращивали при температуре 30°C при интенсивном покачивании (200-250 об/мин) до оптической плотности \(A_{590} = 0.5\) в среде SOB. Затем клетки собирали центрифугированием при 4000 г в течение 5 минут при температуре 4°C. Осадок клеток ресуспендировали в охлажденном буфере TB (в объеме 1/4 от начального объема клеточной культуры) и повторяли центрифугирование. Осадок ресуспендировали в охлажденном буфере TB (в объеме 1/15 от начального объема культуры), добавляли диметилсульфоксид до 7%, выдерживали клетки 10 минут во льду, делали аликвоты по 200 мкл и замораживали в жидком азоте. Полученные компетентные клетки сразу использовали для трансформации или хранили при температуре -70°C.

2.1.7. Трансформация компетентных клеток E. coli лигазной смесью («Бело-голубой тест»)

Для одной трансформации использовали 200 мкл суспензии компетентных клеток. Трансформацию проводили в полипропиленовых пробирках. К компетентным клеткам добавляли 75 нг лигазной смеси, содержащей ДНК, и помещали на 30 минут в лед. По истечении этого времени проводили тепловой шок при температуре 42°C на водяной бане в течение 30 секунд. После охлаждения на льду в течение 5 минут, к клеткам добавляли 0.8 мл среды LB и инкубировали в течение часа при температуре 37°C. Затем клетки осаждали коротким центрифугированием и удаляли 900 мкл супернатанта. Клетки ресуспендировали в оставшемся объеме и наносили на чашки с агаризованной LB-средой (содержащей, кроме основных компонентов, дополнительно 5% X-gal, 1 мМ ИПТГ, 100 мкг/мл ампициллин, 15 мкг/мл тетрациклин). Чашки инкубировали при температуре 37°C до появления колоний (12-14 часов).

2.1.8. Анализ клонов клеток методом ПЦР

Для проведения анализа бактериальных колоний на наличие рекомбинантной плазмиды использовали ПЦР. Отбирали выросшие белые колонии (голубые колонии не содержат плазмидную ДНК со вставленным геном) с поверхности чашки и ресуспендировали в 50 мкл дистилированной воды. Раствор прогревали в течение 5 минут при температуре 99°C, а затем центрифугировали. Для проведения ПЦР отбирали 5 мкл супернатанта. Реакцию амплификации проводили в 20 мкл смеси с использованием TaqSE ДНК-полимеразы как описано в разделе 2.1.1. ПЦР проводили с одним специфическим праймером к гену и другим к плазмиде. Результаты реакции анализировали методом электрофореза в 2% агарозном геле с использованием
ДНК-маркеров. Если в результате реакции синтезировался фрагмент ДНК нужной величины, то выделяли плазмиду из данного клона и передавали для секвенирования в фирму «Синтол» (Россия).

2.1.9. Трансформация компетентных клеток E. coli плазмидной ДНК
Для одной трансформации использовали 200 мкл суспензии компетентных клеток. Трансформацию проводили в полипропиленовых пробирках. К компетентным клеткам добавляли 10 нг плазмидной ДНК и помещали на 30 минут в лед. По истечении этого времени проводили тепловой шок при температуре 42°C на водяной бане в течение 30 секунд. После охлаждения на льду в течение 5 минут, к клеткам добавляли 0.8 мл среды LB и инкубировали в течение часа при температуре 37°C. Затем клетки осаждали коротким центрифугированием и удаляли 900 мкл супернатанта. Клетки ресуспендировали в оставшемся объеме и наносили на чашки с агаризованной LB-средой. Чашки инкубировали при температуре 37°C до появления колоний (12-14 часов). При проведении селекции с использованием антибиотиков к агаризованной среде добавляли ампициллин (до 100 мкг/мл), канамицин (до 50 мкг/мл), тетрациклин (до 15 мкг/мл).

2.1.10. Выделение плазмидной ДНК
Очистка плазмид для секвенирования и трансформации проводилась с использованием фирменного набора QIAquick® Spin Miniprep Kit в соответствии с рекомендациями фирмы-изготовителя. Для использования в реакции транскрипции очистка плазмид проводилась с использованием фирменного набора QIAquick® Plasmid Mega Kit в соответствии с рекомендациями фирмы-изготовителя.

2.1.11. Рестрикция и очистка плазмидной ДНК для транскрипции
Рестрикцию плазмидных ДНК (800 мкг) проводили в объеме 800 мл в течение 3 часов при 37°C, используя сайт-специфические эндонуклеазы рестрикции SmaI для pMja23S-73.UC18 и pMja23S-95.UC18 в буфере Y (СибЭнзим, Россия), EheI для pMja23S-74.UC18 и pMja23S-76.UC18 в буфере Tango® (Fermentas, Литва). Для проверки полноты рестрикции отбирали пробу из реакционной смеси и анализировали электрофорезом в 1% агарозном геле. После этого проводили фенольную депротеинизацию, как описано в разделе 2.1.12. Плазмидную ДНК осаждали добавлением 1/10 объема 3 М ацетата натрия pH 5.2 и 3 объемов этанола, выдерживали при -20°C в
течение ночи. Агрегировавшую ДНК собирали центрифугированием (10000 г, 30 мин, 4°C) и растворяли в 10 мМ трис-НCl, рН 8.0.

2.1.12. Фенольная депротеинизация нуклеиновых кислот
Для очистки ДНК от белков использовали фенольную депротеинизацию. Раствор нуклеиновой кислоты смешивали с равным объемом фенола, насыщенного водой, и тщательно встряхивали до образования однородной эмульсии. Для разделения фаз эмульсию центрифугировали (14000 г, 2 мин). Водную (верхнюю) фазу аккуратно отбирали и смешивали с равным объемом смеси: фенол/насыщ. хлороформ/изоамиловый спирт (соотношение 25/24/1), также тщательно встряхивали и разделяли фазы центрифугированием, водную фазу отбирали и смешивали с равным объемом смеси хлороформ/изоамиловый спирт (24/1). После перемешивания и центрифугирования водную фазу отбирали, нуклеиновую кислоту осаждали добавлением 1/10 объема 3 М ацетата натрия pH 5.2 и 3 объемов этанола, выдерживали при -20°C в течение ночи. Агрегировавшую нуклеиновую кислоту осаждали центрифугированием (14000 г, 30 мин, 4°C) и растворяли в 10 мМ трис-НCl, рН 8.0.

2.1.13. Экспрессия рекомбинантных генов белков MjaP0NTF, MjaL11
Для экспрессии генов использовали систему Штудиера (Studier et al., 1990). Клетки E. coli BL21(DE3) с pUBS520 (кодирует дополнительные тРНК для кодонов AGA, AGG, редко встречающихся в E. coli) трансформировали плазмидой pET11с, содержащей нужный ген белка, и высевали растиранием на чашку с агаризованной средой LB, содержащей антибиотики ампициллин и канамицин (100 мкг/мкл и 50 мкг/мкл, соответственно). Клетки растили в течение ночи при 37°C. Затем пересевали в жидкую среду LB (100 мкг/мкл и 50 мкг/мкл ампициллина и канамицина, соответственно) и растили при температуре 37°C при интенсивном покачивании (200-250 об/мин) до оптической плотности A590 = 0.6, после чего к клеткам добавляли ИПТГ до конечной концентрации 0.4 мМ. После добавления индуктора клетки продолжали инкубировать в тех же условиях в течение 3 часов, по истечении которых осаждали центрифугированием (8000 г, 15 минут, 4°C).
2.1.14. Экспрессия гена белка MjaL11 для получения селенометионинового производного белка

Для получения модифицированного белка MjaL11 с заменой метионинов на селенометионины (Se-Met MjaL11) использовали ауксотрофный по метионину штамм-суперпродуцент E. coli B834(DE3)/pUBS520. Трансформация клеток производилась как описано в разделе 2.1.9. Трансформированные клетки засевали в жидкую среду M9, содержащей 50 мкг/мкл канамицина, 100 мкг/мкл ампициллина, 0.4% глюкозы, соли (2 mM MgSO_{4}, 0.2 mM CaCl_{2}, 1 mM FeCl_{3}), витамины (0.1 мг/л биотина, 0.1 мг/л фолиевой кислоты, 0.05 мг/л тиамина, 0.01 мг/л рибофлавина, 0.1 мг/л D-пантотената, 0.1 мг/л холинхлорида, 0.1 мг/л перидоксаля, 0.1 мг/л никотинамида), аминокислоты в концентрации 40 мг/л (включая селенометионин вместо метионина), и подращивали клетки при 37°C в течение ночи. Далее клетки пересевали в 2 л среды M9 с антибиотиками и всеми добавками и растили при 37°C до оптической плотности A_{590}= 0.6. После этого к клеткам добавляли ИПТГ до конечной концентрации 0.4 мМ, и инкубировали их в тех же условиях в течение 3 часов. После клетки осаждали центрифугированием (8000 g, 15 минут, 4°C).

2.2. Биохимические методы при работе с белками

2.2.1. Выделение белков MjaP0NTF, MjaL11 и Se-Met MjaL11

3 г клеток штамма-суперпродуцента с необходимым белком ресуспендировали в 18 мл буфера A с добавлением PMSF – ингибитора сериновых протеаз (до 0.1 мМ). Разрушение биомассы суперпродуцента проводили во льду в полипропиленовых пробирках на ультразвуковом дезинтеграторе в режиме: время пульса – 1 секунда, пауза – 2 секунды, рабочее время – 10 минут, интенсивность 5 единиц.

Клеточный дебрис удаляли низкоскоростным центрифугированием (14000 g, 30 минут, 4°C). Из полученной надосадочной жидкости осаждали рибосомы центрифугированием (90000 g, 50 мин, 4°C) ротор TLA100.3 (Beckman, США). Безрибосомные экстракты прогревали при температуре 75°C в течении 20 минут. Денатурированные термолябильные белки E. coli осаждали центрифугированием (14000 g, 30 мин, 4°C).

2.2.2. Хроматографическая очистка белка MjaP0NTF

Препарат рибосомного белка MjaP0NTF после выделения подвергали хроматографической очистке. К препарату белка добавляли сульфат аммония до конечной
концентрации 1.7 М и наносили на колонку с гидрофобным носителем Butyl-Sepharose (объем колонки 5 мл), уравновешенную буфером Б со скоростью 0.7 мл/мин. После нанесения образца колонку промывали буфером того же состава. Элюция белка осуществлялась обратным линейным градиентом концентрации сульфата аммония (до 0 М) и NaCl (от 1 М до 40 мМ). Объем градиента – 16 объемов колонки. Фракции собирали по 2 мл. Наиболее чистые фракции, содержащие белок, собирали, концентрировали и диализовали против буфера В. Следующей стадией хроматографической очистки была аффинная хроматография на колонке с сорбентом Heparin-Sepharose. Препарат белка наносили на хроматографическую колонку с носителем Heparin-Sepharose (объём колонки 20 мл), уравновешенную буфером В со скоростью 0.7 мл/мин. Затем колонку промывали тем же буфером. Элюция белка с колонки осуществлялась линейным градиентом концентрации NaCl (от 20 ММ до 0.6 М) объемом равным 10 объемам колонки. Фракции собирали по 4 мл. Наиболее чистые фракции, содержащие белок, собирали, концентрировали и диализовали против буфера Г для завершающей стадии очистки с помощью гель-фильтрации. Препарат рибосомного белка MjaP0NTF наносили на колонку со смолой Superdex 75PG (объем колонки 120 мл), уравновешенную буфером Г со скоростью протока 0.7 мл/мин. После нанесения образца колонка промывалась буфером Г. Фракции собирали по 1.5 мл. Наиболее чистые фракции, содержащие белок, собирали, концентрировали до 15 мг/мл и диализовали против буфера Д. Анализ фракций после каждого этапа хроматографической очистки осуществлялся спектрофотометрически и электрофорезом в ПААГ в присутствии ДСН.

2.2.3. Хроматографическая очистка белка MjaL11 и его селенометионинового производного

Препарат рибосомного белка MjaL11 после выделения подвергали хроматографической очистке. К препарату белка добавляли сульфат аммония до конечной концентрации 1.7 М и наносили на колонку с гидрофобным носителем Butyl-Sepharose (объем колонки 5 мл), уравновешенную буфером В со скоростью 0.7 мл/мин. После нанесения образца колонку промывали буфером того же состава. Элюция белка осуществлялась обратным линейным градиентом концентрации сульфата аммония (до 0 М) и NaCl (от 1 М до 40 мМ). Объем градиента – 16 объемов колонки. Фракции собирали по 2 мл. Наиболее чистые фракции, содержащие белок, собирали, концентрировали и диализовали против буфера В для следующего этапа хроматографической очистки. Препарат белка MjaL11 наносили на хроматографическую колонку с носителем Q-Sepharose (объём колонки 5 мл), уравновешенную буфером В со
скоростью 0.7 мл/мин. Затем колонку промывали 30 мл того же буфера. Препарат MjaL11 не связывался с сорбентом SP-Sepharose и обнаруживался в свободных фракциях. Фракции, содержащие белок, собирали и концентрировали. Сконцентрированный препарат MjaL11 после хроматографии на колонке с носителем SP-Sepharose наносили на хроматографическую колонку с носителем Q-Sepharose (объём колонки 5 мл), уравновешенную буфером В со скоростью 0.7 мл/мин. Затем колонку промывали 30 мл того же буфера. Препарат белка MjaL11 также не связывался с сорбентом Q-Sepharose и обнаруживался в свободных фракциях. Фракции, содержащие белок, собирали, концентрировали до 30 мг/мл и диализовали против буфера Д. Все фракции после каждого этапа хроматографической очистки анализировали спектрофотометрически и электрофорезом в ПААГ в присутствии ДСН.

Хроматографическая очистка Se-Met MjaL11 осуществлялась по схеме, разработанной для немодифицированного белка MjaL11.

2.2.4. Электрофорез в ПААГ в денатурирующих условиях

Электрофорез проводили по методу Леммли (Laemmli, 1970) в пластинах геля размером 7×8 см толщиной 1 мм в аппарате “Minigel-Twin” фирмы BioMetra.

Разделяющий гель содержал: 15% акриламида (соотношение акриламида : метилен-бис-акриламида 37.5:1), 375 мМ трис-гидроксиламина, рН 8.8; 0.1% ДСН. Для полимеризации на 1 мл раствора добавляли 1 мкл ТЕМЕД и 10 мкл 10% персульфата аммония. Концентрирующий гель содержал: 6% акриламида (соотношение акриламида : метилен-бис-акриламида 37.5:1), 125 мМ трис-гидроксиламина, рН 6.8; 0.1% ДСН. Для полимеризации на 1 мл раствора добавляли 1 мкл ТЕМЕД и 10 мкл 10% персульфата аммония.

Электродный буфер для электрофореза в денатурирующих условиях, содержащий 25 мМ трис, 192 мМ глицерин, 0.1% ДСН, рН 8.3 использовали однократно. Буфер для нанесения белковых образцов содержал 50 мМ трис-гидроксиламина, рН 6.8, 2% ДСН, 0,29 М β-меркаптоэтанол, 12% сахарозы, 0.1% БФС. К анализируемому образцу добавляли данный буфер (1/5 часть от объема образца) и прогревали при температуре 99°C в течение 5 минут.

Режим электрофореза: напряжение 120 В до вхождения образцов в разделяющий гель, затем 180 В – до выхода красителя из геля. После электрофореза гель фиксировали и окрашивают в растворе, содержащем 10% уксусной кислоты, 20% этанола и 0.5% кумарсина G250 при температуре 65°C в течение 10 минут. Фоновую окраску отмывали кипячением в воде.
2.2.5. Электрофорез в ПААГ в неденатурирующих условиях pH 4.5

Электрофорез проводили в пластинах геля размером 7×8 см толщиной 1 мм в аппарате “Minigel-Twin” фирмы BioMetra.

Разделяющий гель: 15% акриламид (соотношение акриламид : метилен-бис-акриламид 37.5:1), 0.12 М KAc; 296 мМ “ледяная” уксусная кислота. Для полимеризации на 1 мл раствора добавляли 3 мкл ТЕМЕД и 30 мкл 10% персульфата аммония. Концентрирующий: 4% акриламид (соотношение акриламид : метилен-бис-акриламид 37.5:1), 120 мМ KAc; 4 мМ “ледяная” уксусная кислота. Для полимеризации на 1 мл раствора добавляли 1 мкл ТЕМЕД и 10 мкл 10% персульфата аммония.

Электродный буфер для электрофореза, содержащий 0.35 мМ β-аланина, 133 мМ уксусной кислоты, pH 4.5 использовали однократно. Буфер для нанесения белковых образцов содержал 0.24 М ацетата калия, 144 мМ уксусной кислоты, 20% глицерина, метиленовый синий, pH 4.5. К анализируемому образцу добавляли буфер для нанесения белковых образцов (в объемном отношении 1:1 с образцом) и наносили в слоты геля.

Режим электрофореза: напряжение 40 В до вхождения образцов в разделяющий гель, затем 100 В – до выхода красителя из геля. После электрофореза гель фиксировали и окрашивали в растворе, содержащем 10% уксусной кислоты, 20% этанола и 0.5% кумасси G250 при температуре 65°C в течение 10 минут. Фоновую окраску отмывали кипячением в воде.

2.3. Биохимические методы при работе с РНК

2.3.1. Получение специфических фрагментов рРНК

Специфические фрагменты рРНК были получены транскрипцией с линеаризованных по сайту EheI плазмид рМja23S-74.UC18 и рМja23S-76.UC18 и с линеаризованных по сайту SmaI плазмид рМja23S-73.UC18 и рМja23S-95.UC18, несущих гены фрагментов 23S рРНК под контролем промотора РНК полимеразы фага T7.

Реакцию транскрипции проводили 3 часа при 37°C в реакционной смеси, содержащей 80 мМ Hepes-KOH, pH 7.5, 40 мМ ДТТ, 2 мМ спермидина, 20 мМ MgCl₂, 6 мМ АТФ, 6 мМ ГТФ, 6 мМ ЦТФ и 6 мМ УТФ, 100 мкг плазмидной ДНК, линеаризованной по сайту рестрикции, и T7 РНК-полимеразу собственного производства (2000 единицы активности на 1 мл транскрипционной смеси). Образующийся в результате реакции пирофосфат магния удаляли центрифугированием (14000 g, 30 мин, 4°C). Транскрипционную смесь осаждали 3 объёмами этанола с добавлением 1/10 объема ацетата натрия pH 5.2 и инкубировали при -20°C в течение ночи.
Для дальнейшей очистки транскрипционную смесь разделяли в 15% ПААГ в присутствии 8 М мочевины (см. раздел 2.3.2.). Спиртовой осадок транскрипционной смеси после центрифугирования (14000 г, 30 мин, 4°С) растворяли в буфере для образца, содержащего 90 мМ трис-ацетат, рН 7.8, 8 М мочевину, 5 мМ ЭДТА, рН 8.0, 0.1% БФС, и наносили в слоты геля. Полосу геля с фрагментом РНК вырезали, измельчали и элюировали в буфере Е в течение двух часов при 4°С.

Очистку РНК после элюции из геля от низкомолекулярных примесей проводили с помощью анионообменной хроматографии на DEAE-Sepharose (объем колонки 10 мл). Образец наносили на колонку, предварительно уравновешенную буфером Е со скоростью 0.7 мл/мин. Затем колонку промывали тем же буфером. Элюция РНК с колонки осуществлялась ступенчатым градиентом концентрации NaCl (от 0.1 М до 0.8 М). Фракции собирали по 0.5 мл и анализировали спектрофотометрически. Чистоту препарата РНК анализировали электрофорезом в 15% ПААГ в присутствии 8 М мочевины. Фракции, содержащие РНК, объединяли, а затем осаждали 3 объемами этанола с добавлением 1/10 объема ацетата натрия рН 5.2. Агрегировавшую РНК осаждали центрифугированием (14000 г, 30 мин, 4°С) и растворяли в деионизованной воде.

2.3.2. Электрофорез РНК в ПААГ в денатурирующих условиях с мочевиной
Электрофорез проводили в пластинах геля размером 7×8 см толщиной 1.5 мм в аппарате "Mini Protein II" фирмы BioRad.

Состав геля: 15% акриламида (соотношение акриламида : метилен-бис-акриламид 19:1), 8 М мочевина, буфер ТАЕ. Для полимеризации на 1 мл геля добавляли 1 мкл ТЕМЕД и 10 мкл 10% персульфата аммония.

Электродный буфер ТАЕ для электрофореза использовали однократно. Образцы растворяли в буфере, содержашем буфер ТАЕ, 8 М мочевину, 0.1% БФС и наносили в слоты геля. Режим электрофореза 60 В до входа образцов в гель, а затем 170 В до выхода краски. После окончания электрофореза гель красили в течение 3 минут при комнатной температуре в растворе, содержащем 0.25% толуидинового синего, 5% уксусной кислоты, 10% этанола. После окрашивания гель отмывали в холодной воде.

2.3.3. Электрофорез белка, РНК, РНК-белковых комплексов в ПААГ в неденатурирующих условиях
Электрофоретический анализ белка, РНК, РНК-белковых комплексов проводили в 10% ПААГ (соотношение акриламида : метилен-бис-акриламид 19:1), содержащем 90 мМ...
трис, 90 мМ борной кислоты и 10 мМ MgCl₂. Для полимеризации на 1 мл геля добавляли 1 мкл TEMED и 10 мкл 10% персульфата аммония.

Электродный буфер, содержащий 90 мМ трис, 90 мМ борной кислоты, 10 мМ MgCl₂, pH 8.3 использовали однократно. Буфер для нанесения образцов содержал 0.2 М трис, 0.2 М борной кислоты, 20% сахарозы, 50 мМ MgCl₂, 0.5% БФС, pH 8.3. К образцам добавляли 1/5 объема данного буфера и наносили в слоты геля.

Режим электрофореза: 100 В до входа образцов в гель, а затем 120 В, продолжительность процесса – до выхода ксиленцианола из геля. После электрофореза гель окрашивали в течение 1-2 минут при комнатной температуре в растворе, содержащем 0.5 мкг/мл бромистого этидия, гель фотографировали в ультрафиолетовом свете (λ=256 нм) при помощи фотоаппарата, либо гель красили в течение 3 минут при комнатной температуре в растворе, содержащем 0.25% толуидинового синего, 5% уксусной кислоты, 10% этанола, а после окрашивания гель отмывали в холодной воде. При анализе белка и РНК-белковых комплексов после данной процедуры гель инкубировали в растворе, содержащем 10% уксусной кислоты, 20% этанола, 0.5% кумасси G250 при температуре 65°C в течение 10 минут. Фоновую окраску отмывали кипячением в воде.

2.3.4. Получение РНК-белковых комплексов

2.3.4.1. Образование комплексов MjaP0NTF с фрагментами 23S рРНК разной длины

Образование комплекса осуществлялось смешением изолированных компонентов. Непосредственно перед смешиванием с белком образец РНК прогревали в течение 10 минут при температуре 65°C и охлаждали до комнатной температуры. Для образования комплекса РНК и белок смешивали в молярном соотношении 1:1 в буфере D и инкубировали при комнатной температуре в течение 30 минут.

2.3.4.2. Образование комплекса MjaP0NTF-MjaL11-23SpPHK(74)

Образование комплекса осуществлялось смешением изолированных компонентов. Непосредственно перед смешиванием с белками образец РНК прогревали в течение 10 минут при температуре 65°C и охлаждали до комнатной температуры. Чтобы получить комплекс MjaP0NTF-MjaL11-23SpPHK(74) со стехиометрическим соотношением 1:1:1, 1.2-кратный избыток белков MjaP0NTF и MjaL11 добавляли к Mja23SpPHK(74) и инкубировали при 4°C в течение 30 минут. Для отделения избытка белков от тройного комплекса была использована гель-фильтрация на колонке Superdex 75PG. Смесь
компонентов наносили на колонку со смолой Superdex 75PG (объем колонки 120 мл), уравновешенную буфером Ж. Скорость протока 0.7 мл/мин. После нанесения образца колонка промывалась буфером Ж. Фракции собирали по 0.5 мл, анализировали спектрофотометрически и электрофорезом в ПААГ в присутствии ДСН. Фракции, содержащие тройной комплекс, объединяли, концентрировали и диализовали против буфера Д.

2.3.4.3. Образование комплекса MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон
Образование комплекса осуществлялось смещением изолированных компонентов. Непосредственно перед смешиванием с белками образец РНК прогревали в течение 10 минут при температуре 65°C и охлаждали до комнатной температуры. Чтобы получить комплекс MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон, 1.5-кратный избыток белков MjaP0NTF и MjaL11 добавляли к Mja23SpPHK(74) и инкубировали при 4°C в течение 30 минут. После образования комплекса был добавлен 5-кратный избыток антибиотика тиострептона, который был предварительно растворен в диметилсульфоксиде, и инкубировали в течение ночи при 4°C. Для отделения избытка белков и антибиотика от комплекса была использована гель-фильтрация на колонке Superdex 75PG. Смесь компонентов наносили на колонку со смолой Superdex 75PG (объем колонки 120 мл), уравновешенную буфером Ж. Скорость протока 0.7 мл/мин. После нанесения образца колонка промывалась буфером Ж. Фракции собирали по 0.5 мл, анализировали спектрофотометрически и электрофорезом в ПААГ в присутствии ДСН. Фракции, содержащие комплекс, объединяли, концентрировали и диализовали против буфера Д.

2.4. Кристаллизация белка и РНК-белковых комплексов
Для кристаллизации РНК-белковых комплексов использовали метод диффузии паров в висящей капле, а для кристаллизации белка – метод диффузии паров в сидячей капле (Davies and Segal, 1971).
Препарат РНК-белкового комплекса (2 мкл) с концентрацией 5-8 мг/мл в буфере Д помещали в центр силиконированного покровного стекла размером 22х22х1.5 мм, затем добавляли к комплексу равный объем раствора осадителя. Стекло с каплей помещали над стаканчиком с противораствором объемом 0.5 мл. Края стаканчика предварительно смазывали вакуумной смазкой. Кристаллизацию проводили при температуре 22°C.
Белковый препарат (2 мкл) с концентрацией 28-32 мг/мл в буфере Д помещали в лунку и добавляли 1 мкл раствора осадителя. Объем противораствора равен 200 мкл.
Ячейку с каплей и противораствором закрывали липкой прозрачной лентой. Кристаллизацию проводили при температуре 18⁰C.

В таблице 2 представлены условия кристаллизации белка и РНК-белковых комплексов.

2.5. Кристалло графические методы

2.5.1. Съемка и обработка дифракционных данных

Наборы дифракционных данных с кристаллов рибосомного комплекса MjaP0NTF-23SpPHK(74) были собраны на синхротроне BESSY II (г. Берлин, Германия). Наборы дифракционных данных с кристаллов немодифицированного белка MjaL11 и его селено-метионинового производного и с кристаллов рибосомного комплекса MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон были собраны на синхротроне ESRF (г. Гренобль, Франция). Набор дифракционных данных с кристаллов тройного рибосомного комплекса MjaP0NTF-MjaL11-23SpPHK(74) был собран на лабораторной системе рентгеновского излучения PROTEUM X8 (www.bruker.com).

Обработка экспериментальных данных, полученных с кристаллов MjaP0NTF-23SpPHK(74), MjaL11, Se-Met MjaL11 и MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон проводилась в программе XDS (Kabsch, 2010), а с кристаллов MjaP0NTF-MjaL11-23SpPHK(74) – пакетом программ PROTEUM2 (Brüker, США). Характеристика наборов дифракционных данных представлены в таблице 3.

2.5.2. Анализ содержания ячейки

Для определения количества молекул комплексов в асимметричной части элементарной ячейки необходимо провести ее анализ. Анализ содержания ячейки проводился в программном комплексе CCP4 (Collaborative Computational Project, N. 4, 1994) в программе Cell Content Analysis.

При наиболее вероятном значении числа молекул в асимметричной части элементарной ячейки коэффициент Метьюза (Matthews, 1968) должен принимать значения от 1.66 Å³/Да до 4.00 Å³/Да, что соответствует содержанию растворителя в объеме кристалла от 27.0 % до 78.0 %.
Таблица 2. Кристаллизация белка и РНК-белковых комплексов

<table>
<thead>
<tr>
<th>Объект</th>
<th>Начальные условия кристаллизации</th>
<th>Оптимизированные условия кристаллизации</th>
<th>Криораствор</th>
</tr>
</thead>
<tbody>
<tr>
<td>MjaP0NTF-23SpPHK(74)</td>
<td>50 мМ какодилат натрия, рН 6.5, 0.2 М KCl, 0.1 М ацетат магния, 10% ПЭГ 8000 добавка 0.5 мМ СТАВ капля: 2 мкл комплекса + 2 мкл осадителя</td>
<td>50 мМ какодилат натрия, рН 6.5, 0.2 М KCl, 0.1 М ацетат магния, 9% ПЭГ 6000 добавки 0.5 мМ СТАВ капля: 2 мкл комплекса + 2 мкл осадителя</td>
<td>50 мМ какодилат натрия, рН 6.5, 0.2 М KCl, 0.1 М ацетат магния, 15% ПЭГ 8000, 15% глицерин заморозка до 100 К</td>
</tr>
<tr>
<td>MjaL11</td>
<td>100 мМ цитрата натрия, рН 5.0, 0.1 М MgCl₂, 30% ПЭГ 500 DME капля: 1 мкл белка + 1 мкл осадителя</td>
<td>100 мМ цитрата натрия, рН 5.0, 0.1 М MgCl₂, 27% ПЭГ 600 капля: 2 мкл белка + 1 мкл осадителя</td>
<td>100 мМ цитрата натрия, рН 5.0, 0.1 М MgCl₂, 50% ПЭГ 600 заморозка до 100 К</td>
</tr>
<tr>
<td>Se-Met MjaL11</td>
<td>100 мМ цитрата натрия, рН 5.0, 0.1 М MgCl₂, 27% ПЭГ 600 капля: 2 мкл белка + 1 мкл осадителя</td>
<td></td>
<td>100 мМ цитрата натрия, рН 5.0, 0.1 М MgCl₂, 50% ПЭГ 600 заморозка до 100 К</td>
</tr>
<tr>
<td>MjaP0NTF-MjaL11-23SpPHK(74)</td>
<td>50 мМ трис-НСl, рН 7.5, 0.15 М KCl, 20 мМ MgCl₂, 15% ПЭГ 4000 капля: 1 мкл комплекса + 1 мкл осадителя</td>
<td></td>
<td>50 мМ трис-НСl, рН 7.5, 0.15 М KCl, 20 мМ MgCl₂, 15% ПЭГ 4000, 15% глицерин заморозка до 110 К</td>
</tr>
<tr>
<td>MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон</td>
<td>0.1 М трис-НСl, рН 8.0, 1 мМ ТСЕР, 10% ПЭГ 8000, 10% глицерин капля: 1 мкл комплекса + 1 мкл осадителя</td>
<td>0.1 М трис-НСl, рН 7.5, 1 мМ ТСЕР, 10% ПЭГ 8000, 20% глицерин добавка 0.125 мМ СТАВ капля: 1 мкл комплекса + 1 мкл осадителя</td>
<td>0.1 М трис-НСl, рН 7.5, 1 мМ ТСЕР, 15% ПЭГ 8000 и 20% глицерин заморозка до 100 К</td>
</tr>
<tr>
<td>Источник</td>
<td>Детектор</td>
<td>Длина волны (Å)</td>
<td>Пространственная группа</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>MjaL11</td>
<td>Native</td>
<td>0.97625</td>
<td>I222 (№23)</td>
</tr>
<tr>
<td></td>
<td>Se-Met</td>
<td>0.97917</td>
<td>I222 (№23)</td>
</tr>
<tr>
<td>MjaP0NTF-23SpPHK(74)</td>
<td></td>
<td>0.9184</td>
<td>I222 (№23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон</td>
<td></td>
<td>1.5418</td>
<td>P2₁ (№4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Значения в скобках указаны для зоны высокого разрешения
2.5.3. Определение и уточнение структур

2.5.3.1. Переуточнение структуры P0•(P1NTD)_6 из P. horikoshii

В качестве стартовой модели для переуточнения была взята структура комплекса P0•(P1NTD)_6 из P. horikoshii (PhoP0-P1NTD) из банка белковых структур (PDB код 3A1Y). Из этой структуры предварительно были удалены все молекулы воды. Уточнение структуры белкового комплекса проводилось с помощью программ Phenix.Refine (Afonine et al., 2012) и Refmac (Murshudov et al., 2011). Для интерпретации карт электронной плотности использовалась программа молекулярной графики Coot (Emsley et al., 2010). В результате более корректного встраивания аминокислотных остатков, удаления лишних молекул воды, удалось достроить перетяжку между первым и вторым доменами белка P0, а также одну альфа-спираль домена 2 белка. Конечная модель была уточнена до значений R-фактора = 20.5% и R_free-фактора = 25.0% в программе Phenix.Refine (Afonine et al., 2012) относительно набора данных, собранных от кристаллов комплекса PhoP0-P1NTD, с разрешением 2.1 Å (Табл. 4). После процедуры уточнения координат и B-факторов всех атомов комплекса была проведена проверка стереохимии структуры c использованием программ Procheck (Laskowski et al., 1993) и Whatcheck (Hooft et al., 1996) программного комплекса CCP4.

2.5.3.2. Определение и уточнение структуры MjaL11

Обработка дифракционных данных, полученных с кристаллов MjaL11 дикого типа и его селенометиониновых производных проводилась в программе XDS (Kabsch, 2010). Характеристика наборов дифракционных данных представлена в таблице 3.

Пространственная структура MjaL11 была решена методом одноволнового аномального рассеивания с использованием процедуры AutoSol (Terwilliger et al., 2009) программного комплекса Phenix (Adams et al., 2010). Для определения координат тяжелых атомов был использован набор, полученный на синхротроне ESRF (г. Гренобль, Франция) на длине волны 0.97917 Å, соответствующей пику поглощения селена. После определения пространственных координат атомов селена была построена первоначальная карта электронной плотности. Первоначальное автоматическое построение модели было проведено в программе AutoBuild из программного комплекса Phenix. После каждого шага построения модели, выполнялось уточнение вновь полученной молекулы MjaL11 в программе Refmac (Murshudov et al., 2011). Ручное построение модели проводилось в программе Coot (Emsley et al., 2010). Окончательное уточнение происходило в программе Phenix.Refine (Afonine et al., 2012).
Таблица 4. Статистика уточнения структуры PhoP0-P1NTD

<table>
<thead>
<tr>
<th></th>
<th>До переуточнения</th>
<th>После переуточнения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диапазон разрешения (Å)</td>
<td>34.99-2.13</td>
<td>(2.19-2.13)</td>
</tr>
<tr>
<td>R (%)</td>
<td>22.0 (22.8)</td>
<td>20.5 (24.7)</td>
</tr>
<tr>
<td>R_free (%)</td>
<td>26.0 (28.0)</td>
<td>25.0 (28.9)</td>
</tr>
<tr>
<td>Число атомов белка</td>
<td>4298</td>
<td>4497</td>
</tr>
<tr>
<td>Число молекул</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Воды</td>
<td>429</td>
<td>277</td>
</tr>
<tr>
<td>ПЭГ</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Ион CH₃COO⁻</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Ион Cl⁻</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Среднеквадратичное отклонение от стандартных значений</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Длина связей (Å)</td>
<td>0.012</td>
<td>0.010</td>
</tr>
<tr>
<td>Величина углов (°)</td>
<td>1.552</td>
<td>1.752</td>
</tr>
<tr>
<td>Число остатков на карте Рамачандрана</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Наиболее предпочтительные районы (%)</td>
<td>95.0</td>
<td>98.9</td>
</tr>
<tr>
<td>Дополнительно разрешенные районы (%)</td>
<td>3.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Запрещенные районы (%)</td>
<td>1.9</td>
<td>0</td>
</tr>
<tr>
<td>Средний температурный фактор атомов модели (Å²)</td>
<td>45.2</td>
<td>46.9</td>
</tr>
</tbody>
</table>

Значения в скобках указаны для зоны высокого разрешения

Р = Σ |Fo – Fc| / Σ Fc, где Fo – экспериментальные значения структурных амплитуд, Fc – значения структурных амплитуд, полученных на основании модели. Суммирование осуществляется по всем отражениям набора, за исключением случайным образом выбранных отражений, которые включены в тестовый набор и не участвуют в уточнении. Величина R_free характеризует тестовый набор и рассчитывается аналогично R.

Итоговая модель была уточнена до значений R-фактора = 21.5% и R_free-фактора = 25.2% в программе Refmac (Murshudov et al., 2011) относительно набора данных, собранных с кристаллов белка MjaL11, с разрешением 2.2 Å (Табл. 5). После уточнения координат и B-факторов всех атомов белка была проведена проверка стереохимии структуры с использованием программ Procheck (Laskowski et al., 1993) и Whatcheck (Hooft et al., 1996) из программного комплекса CCP4. Структура MjaL11, уточненная до 2.2 Å, обладает хорошими стереохимическими параметрами (Табл. 5).
Таблица 5. Статистика уточнения структуры MjaL11

<table>
<thead>
<tr>
<th>Диапазон разрешения (Å)</th>
<th>44.03-2.19 (2.25-2.19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (%)</td>
<td>21.5 (37.1)</td>
</tr>
<tr>
<td>Rfree (%)</td>
<td>25.2 (40.1)</td>
</tr>
</tbody>
</table>

Среднеквадратичное отклонение от стандартных значений

<table>
<thead>
<tr>
<th>Длина связей (Å)</th>
<th>0.013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Величина углов (°)</td>
<td>1.741</td>
</tr>
</tbody>
</table>

Число остатков на карте Рамачандрана

Наиболее предпочтительные районы (%)	88.0
Дополнительно разрешенные районы (%)	12.0
Запрещенные районы (%)	0
Средний температурный фактор атомов модели (Å²)	66.2

Значения в скобках указаны для зоны высокого разрешения

\[R = \frac{\sum |F_o - F_c|}{\sum F_c} \]

где \(F_o \) – экспериментальные значения структурных амплитуд, \(F_c \) – значения структурных амплитуд, полученных на основании модели. Суммирование осуществляется по всем отражениям набора, за исключением случайным образом выбранных отражений, которые включены в тестовый набор и не участвуют в уточнении. Величина Rfree характеризует тестовый набор и рассчитывается аналогично R.

2.5.3.3. Определение и уточнение структуры MjaP0NTF-23SpPHK(74)

Пространственная структура рибосомного комплекса MjaP0NTF-23SpPHK(74) была решена методом молекулярного замещения, реализующимся в программе Phaser программного комплекса CCP4 (Collaborative Computational Project, N. 4, 1994). В качестве стартовой модели использовалась модель структуры рибосомного белка P0NTF из *M. jannaschii* (PDB код 3JSY) и модель фрагмента 23S pPHK (нуклеотидные остатки 1146-1215) в составе 50S субчастицы рибосомы из *H. marismortui* (PDB код 4HUB).

Итоговая модель была уточнена до значений R-фактора = 24.5% и Rfree-фактора = 29.9% в программе Refmac (Murshudov *et al.*, 2011) относительно набора данных, собранных от кристаллов комплекса MjaP0NTF-23SpPHK(74), с разрешением...
3.3 Å (Табл. 6). После процедуры уточнения координат и B-факторов всех атомов комплекса была проведена проверка стереохимии структуры с использованием программ Procheck (Laskowski et al., 1993) и Whatcheck (Hooft et al., 1996) из программного комплекса CCP4. Структура комплекса MjaP0NTF-23SpPHK(74), уточненная до 3.3 Å, обладает хорошими стереохимическими параметрами (Табл. 6).

Таблица 6. Статистика уточнения структуры MjaP0NTF-23SpPHK(74)

<table>
<thead>
<tr>
<th>Диапазон разрешения (Å)</th>
<th>29.64-3.30 (3.40-3.30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (%)</td>
<td>24.5 (47.0)</td>
</tr>
<tr>
<td>R_free (%)</td>
<td>29.9 (52.7)</td>
</tr>
</tbody>
</table>

Среднеквадратичное отклонение от стандартных значений

Длина связей (Å) | 0.008 |
Величина углов (°) | 1.581 |

Число остатков на карте Рамачандрана

Наиболее предпочтительные районы (%) | 92.9 |
Дополнительно разрешенные районы (%) | 7.1 |
Запрещенные районы (%) | 0 |
Средний температурный фактор атомов модели (Å²) | 98.4 |

Значения в скобках указаны для зоны высокого разрешения

\[R = \sum |F_o - F_c| / \sum F_c, \] где \(F_o \) — экспериментальные значения структурных амплитуд, \(F_c \) — значения структурных амплитуд, полученных на основании модели. Суммирование осуществляется по всем отражениям набора, за исключением случайным образом выбранных отражений, которые включены в тестовый набор и не участвуют в уточнении. Величина \(R_{free} \) характеризует тестовый набор и рассчитывается аналогично \(R \).

2.5.3.4. Определение и уточнение структуры MjaP0NTF-MjaL11-23SpPHK(74)

Пространственная структура рибосомного комплекса MjaP0NTF-MjaL11-23SpPHK(74) была решена методом молекулярного замещения, реализующимся в программе Phaser программного комплекса CCP4 (Collaborative Computational Project, Number 4, 1994). В качестве стартовой модели использовалась модель белка MjaP0NTF (PDB код 3JSY), модели N-концевого домена изолированного белка MjaL11 (PDB код 5COL) и C-концевого домена белка L11 в составе 50S субчастицы рибосомы из H. marismortui (PDB код 2Q4A) и модель фрагмента 23S pPHK (нуклеотидные остатки 1151-1224) в составе комплекса MjaP0NTF-23SpPHK(74) (PDB код 5D6G).

Первоначально удалось определить структуру тройного комплекса, состоящего из фрагмента Mja23SpPHK(74), C-концевого домена белка MjaL11 и первого домена белка MjaP0. Уточнение первоначальной модели комплекса выполнялось с использованием
программы Refmac программного комплекса CCP4 (Murshudov et al., 2011). Для интерпретации карт электронной плотности использовалась программа молекулярной графики Coot (Emsley et al., 2010). В результате последовательного использования этапов ручного построения модели и автоматического уточнения удалось достроить второй домен белка P0, а также более точно вписать в карту электронной плотности С-концевую часть белка L11.

Итоговая модель была уточнена до значений R-фактора = 26.6% и R_free-фактора = 29.7% в программе Refmac (Murshudov et al., 2011) относительно набора данных, собранных от кристаллов комплекса MjaP0NTF-MjaL11-23SpPHK(74), с разрешением 2.9 Å (Табл. 7). После процедуры уточнения координат и B-факторов всех атомов комплекса была проведена проверка стереохимии структуры с использованием программ Procheck (Laskowski et al., 1993) и Whatcheck (Hooft et al., 1996) из программного комплекса CCP4. Структура комплекса MjaP0NTF-MjaL11-23SpPHK(74), уточненная до 2.9 Å, обладает хорошими стереохимическими параметрами (Табл. 7).

Таблица 7. Статистика уточнения структуры MjaP0NTF-MjaL11-23SpPHK(74)

<table>
<thead>
<tr>
<th>Диапазон разрешения (Å)</th>
<th>50.00-2.90 (2.97-2.90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (%)</td>
<td>26.6 (36.1)</td>
</tr>
<tr>
<td>R_free (%)</td>
<td>29.7 (37.8)</td>
</tr>
</tbody>
</table>

Среднеквадратичное отклонение от стандартных значений

<table>
<thead>
<tr>
<th>Длина связей (Å)</th>
<th>0.011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Величина углов (°)</td>
<td>1.672</td>
</tr>
</tbody>
</table>

Число остатков на карте Рамачандрана

Наиболее предпочтительные районы (%)	91.3
Дополнительно разрешенные районы (%)	7.1
Запрещенные районы (%)	1.6

Средний температурный фактор атомов модели (Å²) | 43.6 |

Значения в скобках указаны для зоны высокого разрешения

R = Σ |F_o – F_c| / Σ F_c, где F_o – экспериментальные значения структурных амплитуд, F_c – значения структурных амплитуд, полученных на основании модели. Суммирование осуществляется по всем отражениям набора, за исключением случайным образом выбранных отражений, которые включены в тестовый набор и не участвуют в уточнении. Величина R_free характеризует тестовый набор и рассчитывается аналогично R.
2.5.3.5. Определение и уточнение структуры MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон

Пространственная структура рибосомного комплекса MjaP0NTF-MjaL11-23SpPHK(74) была решена методом молекулярного замещения в программе Phaser программного комплекса CCP4 (Collaborative Computational Project, Number 4, 1994). В качестве стартовой модели использовалась модель комплекса MjaP0NTF-MjaL11-23SpPHK(74) (PDB код 5DAR) и модель антибиотика тиострептона (PDB код 1E9W).

Уточнение первоначальной модели комплекса выполнялось с использованием программы Refmac программного комплекса CCP4 (Murshudov et al., 2011). Для интерпретации карт электронной плотности использовалась программа молекулярной графики Coot (Emsley et al., 2010). Конечная модель была уточнена до значений R-фактора = 20.5% и R_free-фактора = 24.5% в программе Phenix.Refine (Afonine et al., 2012) относительно набора данных, собранных от кристаллов комплекса MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон, с разрешением 2.8 Å (Табл. 8). После процедуры уточнения координат и B-факторов всех атомов комплекса была проведена проверка стереохимии структуры с использованием программ Procheck (Laskowski et al., 1993) и Whatcheck (Hooft et al., 1996) программного комплекса CCP4.

Таблица 8. Статистика уточнения структуры MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон

<table>
<thead>
<tr>
<th>Диапазон разрешения (Å)</th>
<th>45.55-2.80 (2.85-2.80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (%)</td>
<td>20.5 (40.4)</td>
</tr>
<tr>
<td>R_free (%)</td>
<td>24.5 (46.9)</td>
</tr>
<tr>
<td>Среднеквадратичное отклонение от стандартных значений</td>
<td></td>
</tr>
<tr>
<td>Длина связей (Å)</td>
<td>0.016</td>
</tr>
<tr>
<td>Величина углов (°)</td>
<td>1.929</td>
</tr>
<tr>
<td>Число остатков на карте Рамачандрана</td>
<td></td>
</tr>
<tr>
<td>Наиболее предпочтительные районы (%)</td>
<td>94.1</td>
</tr>
<tr>
<td>Дополнительно разрешенные районы (%)</td>
<td>5.4</td>
</tr>
<tr>
<td>Запрещенные районы (%)</td>
<td>0.5</td>
</tr>
<tr>
<td>Средний температурный фактор атомов модели (Å²)</td>
<td>74.1</td>
</tr>
</tbody>
</table>

Значения в скобках указаны для зоны высокого разрешения

R = Σ |F_o – F_c| / Σ F_c, где F_o – экспериментальные значения структурных амплитуд, F_c – значения структурных амплитуд, полученных на основании модели. Суммирование осуществляется по всем отражениям набора, за исключением случайным образом выбранных отражений, которые включены в тестовый набор и не участвуют в уточнении. Величина R_free характеризует тестовый набор и рассчитывается аналогично R.
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Работа по определению структур компонентов Р-выступа архейной рибосомы из *M. jannaschii* ведется в нашей лаборатории уже более 10 лет. После того как в 2010 году нами была определена структура изолированного N-концевого РНК-связывающего фрагмента белка P0 (Kravchenko et al., 2010) началась работа по определению структур комплексов белков P0 и L11 с фрагментом pРНК. Определение структур этих комплексов позволяет дополнить структуру основания Р-выступа в составе архейной рибосомной 50S субчастицы и проанализировать РНК-белковые и белок-белковые контакты в этих комплексах.

В процессе выполнения данной работы появилась дополненная структура 50S субчастицы рибосомы из галофильной археи *H. marismortui*, в которой была частично достроена структура P-выступа (Gabdulkhakov et al., 2013). Сравнение структур компонентов основания данного выступа из *H. marismortui* и *M. jannaschii* позволяет определить консервативные участки взаимодействия архейных белков P0 и L11 с 23S pРНК и исследовать подвижность белковой составляющей P-выступа.

1. КриスタЛЛИЗАЦИЯ И ОПРЕДЕЛЕНИЕ СТРУКТУР КОМПОНЕНТОВ Р-ВыСТУПА АРХЕЙНОЙ РИБОСОМЫ

1.1. ИЗОЛИРОВАННЫЙ РИБОСОМНЫЙ БЕЛОК L11 ИЗ АРХЕИ *M. jannaschii*

В структурах 50S субчастицы рибосомы из археи *H. marismortui* электронная плотность в районе N-концевого домена рибосомного белка L11 имеет низкое качество (Gabdulkhakov et al., 2013; Kavran and Steitz, 2007). Кроме того, в качестве модели для построения структуры архейного белка L11 использовалась структура бактериального белка L11 из *T. maritima* в комплексе с фрагментом 23S pРНК (Wimberly et al., 1999). Гомология аминокислотных последовательностей бактериального белка L11 из *T. maritima* и архейного белка L11 из *H. marismortui* составляет 43% (Рис. 34Б). Этого оказалось недостаточно для корректного построения модели архейного белка L11. Для бактериального белка L11 было показано, что положение его N-концевого домена относительно C-концевого домена меняется при связывании с рибосомой (Ilin et al., 2005). Поэтому кристаллизация изолированного белка L11 из *M. jannaschii* позволяет не только определить структуру этого белка, но и проанализировать, изменяется ли положение его N-концевого домена относительно C-концевого домена в изолированном состоянии и при связывании с 23S pРНК.
Выделение, очистка и кристаллизация белка L11 из M. jannaschii

Ген архейного белка L11 из M. jannaschii (MjaL11) был экспрессирован в системе Штудиера (Studier et al., 1990) в клетках штамма-суперпродуцента BL21(DE3)/pUBS520 E. coli. Общая схема выделения белка MjaL11 из клеток E. coli представлена на Рис. 20. Архея M. jannaschii является термофильным организмом. Прогрев клеточного экстракта при температуре 75°C с последующим осаждением денатурированных белков способствовал очистке препарата белка.

Рис. 20. Схема выделения и хроматографической очистки белка MjaL11 из клеток штамма-суперпродуцента E. coli.

Хроматографическая очистка препарата белка MjaL11 состояла из последовательных хроматографий на гидрофобных и ионообменных носителях. Использование гидрофобной хроматографии позволяет связывать белок с носителем при высокой концентрации соли, а это в свою очередь способствует разрушению неспецифических комплексов белка с нуклеиновыми кислотами из экстракта клеток. Поскольку элюция препарата белка MjaL11 проходила в начале градиента концентраций соли, на этом этапе были удалены гидрофобные примесные белки, а примесь нуклеиновых кислот частично сохранилась. Расчетная изоэлектрическая точка (pI) белка MjaL11 находится в кислой области и составляет 5.2. Включение в схему очистки катионообменной хроматографии было направлено на удаление щелочных белков. При этом препарат белка MjaL11 не связывался со смолой и элюировался в свободном объеме. На заключительном этапе очистки применялась анионообменная хроматография при pH
буфера близком к значению pI белка. Такой шаг приводил к тому, что препарат белка MjaL11 снова не связывался с сорбентом и элюировался в свободной фракции, что позволяло убрать оставшиеся примеси клеточных нуклеиновых кислот и белков. С помощью описанной методики выделения и очистки был получен гомогенный препарат MjaL11 в препаративных количествах с чистотой пригодной для кристаллизации (Рис. 21 A и Б).

Рис. 21. (A) Электрофоретический анализ (15% ПААГ в присутствии ДСН) чистоты препарата белка MjaL11. М – белковые маркеры (числа слева – молекулярные массы белков-маркеров, кДа). (B) Электрофоретический анализ (10% ПААГ, pH 8.3) гомогенности очищенного препарата белка MjaL11. (V) Электрофоретический анализ (10% ПААГ, pH 8.3; 10 мМ MgCl₂) связывания MjaL11 и MjaP0NTF со специфичным фрагментом 23S РНК длиной 74 н. о. 1 – Mja23SpPHK(74); 2 – комплекс MjaL11-23SpPHK(74); 3 – комплекс MjaP0NTF-23SpPHK(74); 4 – комплекс MjaP0NTF-MjaL11-23SpPHK(74). Гели (A) и (B) окрашены кумасси G250. Гель (B) окрашен толуидиновым синим.

Кристаллизация изолированного MjaL11 проводилась методом диффузии паров в сидячей капле. Для поиска условий кристаллизации белка использовались коммерческие
наборы. Кристаллизация белка осуществлялась при комнатной температуре (22°C) и концентрации белкового препарата 28-32 мг/мл. Капля содержала 0.5 мкл препарата белка и 0.5 мкл противораствора.

Первые небольшие кристаллы MjaL11 разных форм появлялись через 5 дней в широком диапазоне условий. После оптимизации первоначальных условий кристаллизации (№49 MemMeso, Molecular Dimensions: 100 мМ цитрата натрия, pH 5.0, 0.1 М MgCl₂, 30% ДМЭ ПЭГ 500; Рис. 22А) были получены кристаллы белка MjaL11 пригодные для рентгеноструктурного анализа (Рис. 22Б). Поиск оптимальных условий кристаллизации препарата белка MjaL11 был основан на подборе разных видов высокомолекулярных осадителей, таких как полиэтиленгликоль, и их концентраций. Рост крупных одиночных кристаллов MjaL11 наблюдался при концентрации осадителя ПЭГ 600 в диапазоне 26-28%, а также при объеме белкового препарата 2 мкл и противораствора 1 мкл в капле.

![Рис. 22. (А) Фотография кристаллов изолированного белка MjaL11, полученных в условии №49 (MemMeso, Molecular Dimensions). (Б) Фотография кристалла белка MjaL11, полученного в присутствии 100 мМ цитрата натрия, pH 5.0, 0.1 М MgCl₂, 27% ПЭГ 600.](image)

Получение и кристаллизация селенометионинового производного MjaL11

Наши попытки решить структуру белка MjaL11 методом молекулярного замещения не увенчались успехом, поэтому было принято решение об использовании метода аномального рассеяния с атомов селена для решения фазовой проблемы.

В аминокислотной последовательности MjaL11 содержится шесть метионинов (Рис. 34Б). Замены такого количества метионинов на селенометионины достаточно для того, чтобы получить заметный аномальный сигнал.

Для получения селенометионинового производного белка MjaL11 (Se-Met MjaL11) ген белка MjaL11 экспрессировали в клетках штамма-суперпродуцента B834(DE3)/pUBS520 E. coli, который ауксотрофен по метионину. Наращивание биомассы
клеток проводилось на минимальной среде, в которую вместо метионина был добавлен сelenометионин. Выделение Se-Met MjaL11 из клеток *E. coli* и его хроматографическая очистка осуществлялись по схеме, разработанной для немодифицированного белка (Рис. 20). Белок Se-Met MjaL11 был закристаллизован в условиях, в которых были получены кристаллы немодифицированного белка (Рис. 23).

Рис. 23. Фотография кристаллов сelenометионинового производного белка MjaL11, полученных в присутствии 100 мМ цитрата натрия, рН 5.0, 0.1 М MgCl₂, 26% ПЭГ 600.

Определение структуры MjaL11

На синхротроне ESRF (г. Гренобль, Франция) был собран набор дифракционных данных от кристаллов MjaL11 и его сelenометионинового производного с разрешением 2.2 Å и 2.9 Å, соответственно. Кристаллы белка принадлежат к пространственной группе I222 (орторомбическая). Параметры ячейки и статистика обработки дифракционных данных указаны в таблице 3 (раздел 2.5.1 в Экспериментальной части).

Кристаллическая структура белка MjaL11 была решена методом аномального рассеяния на одной длине волны (single anomalous dispersion, SAD) и уточнена при разрешении 2.2 Å (R-фактор = 21.5% и R_free-фактор = 25.2%). Конечная модель белка содержит 2342 неводородных атомов, один ион Cl⁻, один цитрат-ион и 27 молекул воды и удовлетворяет всем стереохимических параметрам. Статистика уточнения и параметры модели приведены в таблице 5 (раздел 2.5.3.2. в Экспериментальной части). Координаты модели депонированы в банк белковых структур (PDB код 5COL).

1.2. Фрагмент белка P0, P0NTF, в комплексе со специфичным фрагментом 23S рРНК

N-концевой домен 1 белка P0, который консервативен среди бактерий (в бактериальном рибосомном белке L10), архей и эукариот, контактирует со спиралью H42 23S рРНК. Домен 2, который является вставкой в домен 1 белка P0 и специфичен для
архей и эукариот, в 50S субчастице архейной рибосомы расположен между C-концевым доменом белка L6, N-концевым доменом белка L11 и спиралями H42-44 23S pРНК. Подвижность домена 2, обнаруженная при анализе структуры изолированного двухдоменного N-концевого фрагмента белка P0, MjaP0NTF, предполагает возможность контакта этого домена со спиралью H44 23S pРНК (Kravchenko et al., 2010). Определение структуры MjaP0NTF в комплексе со специфичным фрагментом 23S pРНК направлено на изучение детального взаимодействия доменов белка P0 с 23S pРНК в отсутствии белка L11.

Кристаллизация комплекса MjaP0NTF-23SpРНК(95)

Для исследования взаимодействия белка P0 со специфичным участком 23S pРНК использовался фрагмент белка P0 из *M. jannaschii* (Kravchenko et al., 2010) и фрагмент 23S pРНК из *M. jannaschii* длиной 95 н. о. (Рис. 27А), который включал в себя спирали H42-44 (Shcherbakov et al., 2006). Фрагмент белка P0, MjaP0NTF, содержит N-концевой РНК-связывающий домен 1 и специфичный для архей и эукариот домен 2, а C-концевой домен, ответственный за связывание димеров белка P1, как и первые 10 аминокислотных остатков N-концевого domena 1, удалены для улучшения кристаллизации.

Продукция белка MjaP0NTF проводилась в клетках штамма-суперпродуцента *E. coli* BL21(DE3)/pUBS520. Выделение и последующая хроматографическая очистка проводились по разработанной ранее методике (Kravchenko et al., 2010). Очистка состояла из трех последовательных хроматографий. Использование указанной методики позволило получить препарат белка MjaP0NTF с чистотой пригодной для кристаллизации (Рис. 24А). На рисунке 24Б представлен электрофоретический анализ гомогенности выделенного MjaP0NTF.

Специфичный 95-нуклеотидный фрагмент 23S pРНК (Mja23SpРНК(95)) был наработан транскрипцией *in vitro* с помощью T7 РНК-полимеразы. Синтезированный фрагмент Mja23SpРНК(95) очищали от дополнительных продуктов реакции транскрипции и компонентов транскрипционной смеси с помощью электрофореза в денатурирующих условиях в присутствии 8 М мочевины и последующей ионообменной хроматографии. Чистота полученного фрагмента pРНК была достаточной для кристаллизации.
Рис. 24. (А) Электрофоретический анализ (15% ПААГ в присутствии ДСН) чистоты препарата белка MjaP0NTF после хроматографической очистки. M – белковые маркеры (числа слева – молекулярные массы белков-маркеров, кДа). (Б) Электрофоретический анализ (10% ПААГ, pH 4.5) гомогенности очищенного препарата белка MjaP0NTF. Гели окрашены кумасси G250.

Для кристаллизации комплекс MjaP0NTF-23SpPHK(95) был получен смещением изолированных компонентов в молярном соотношении 1:1. Перед смещением с белком фрагмент рНК прогревался при 65°C для удаления дуплексов. Образование комплекса анализировали методом электрофореза в неденатурирующих условиях в присутствии MgCl2 (Рис. 25А, дорожка 2). Белок MjaP0NTF образует прочный и гомогенный комплекс с Mja23SpPHK(95).

Кристаллизация полученного комплекса проводилась методом диффузии паров в висящей капле. Поиск условий кристаллизации осуществлялся с использованием фирменного набора растворов для кристаллизации Natrix (Hampton Research). В растворе №26 (50 мМ какодилата натрия, pH 6.5, 0.2 М KCl, 0.1 М ацетата магния, 10% ПЭГ 8000) через несколько дней появились первые микрокристаллы комплекса MjaP0NTF-23SpPHK(95) (Рис. 26А). Для получения кристаллов, пригодных для рентгеноструктурного анализа, необходимо было оптимизировать условия кристаллизации. Добавление в каплю ионного детергента цетилтриметиламмония бромида (CTAB) способствовало росту отдельных более совершенных кристаллов в форме октаэдра (Рис. 26Б). Однако такие кристаллы комплекса отражали рентгеновские лучи в области низкого разрешения (около 20 Å).
Рис. 25. (А) Электрофоретический анализ (10% ПААГ, pH 8.3; 10 мМ MgCl₂) связывания MjaP0NTF с Mja23SpPHK(95). 1 – Mja23SpPHK(95); 2 – комплекс MjaP0NTF-23SpPHK(95); 3 – комплекс MjaP0NTF-23SpPHK(95) из капли через 14 дней после раскапывания на кристаллизацию. (Б) Электрофоретический анализ (12% ПААГ, pH 7.8 в присутствии 8 М мочевины) препаратов РНК. 1 – Mja23SpPHK(95); 2 – комплекс MjaP0NTF-23SpPHK(95) из капли через 14 дней после раскапывания; 3 – РНК, длиной 79 н. о.; 4 – РНК, длиной 61 н. о.; 5 – РНК, длиной 47 н. о. Гели окрашены бромистым этидием.

Рис. 26. (А) Фотография микрокристаллов комплекса MjaP0NTF-23SpPHK(95), полученных в условии №26 (Natrix, Hampton Research). (Б) Фотография кристаллов комплекса MjaP0NTF-23SpPHK(95), полученных в присутствии 50 мМ какодилата натрия, pH 6.5, 0.5 мМ СТАБ, 0.2 M KCl, 0.1 M ацетата магния, 10% ПЭГ 8000.

Электрофоретический анализ комплекса MjaP0NTF-23SpPHK(95), взятого из капли через 14 дней после раскапывания на кристаллизацию, показал, что специфичный фрагмент 23S pPHK со временем подвергается расщеплению (Рис. 25А, дорожка 3). Чтобы
определить, какие фрагменты образуются при расщеплении pRHК, был проведен дополнительный электрофоретический анализ комплекса MjaP0NTF-pRHК(95) из капли в денатурирующих условиях в присутствии 8 М мочевины (Рис. 25Б). Для приблизительной оценки длины расщепленного фрагмента 23S pRHК в составе комплекса были использованы фрагменты RHК разной длины (любезно предоставлены Тищенко С.В.). Фрагмент Mja23SpRHК(95) в составе комплекса из капли подвергается расщеплению до образования стабильного фрагмента длиной около 85 н. о.

Подбор длины фрагмента 23S pRHК

Из-за того, что фрагмент Mja23SpRHК(95) в комплексе с белком MjaP0NTF при кристаллизации деградировал, было принято решение его длину.

Для определения размера минимального фрагмента 23S pRHК, который необходим для связывания с белком P0, структура двухдоменного N-концевого фрагмента белка P0 из M. jannaschii (Kravchenko et al., 2010) встраивалась в модель 50S субчастицы рибосомы из H. marismortui (Kavran and Steitz, 2007). Фрагмент спирали H42 23S pRHК был выбран такой длины, чтобы N-концевой домен 1 белка P0 мог контактировать с pRHК. В более ранних работах по связыванию архейного комплекса P0-P1 из M. jannaschii с соответствующим фрагментом 23S pRHК было показано, что удаление спирали H43 или H44 23S pRHК приводит к потере связывания таких фрагментов pRHК комплексом P0-P1 (Shcherbakov et al., 2006). На основе этих данных, для кристаллизации с MjaP0NTF были выбраны фрагменты Mja23SpRHК разной длины (Рис. 27 Б, В, Г), которые отличаются только длиной спирали H42: фрагменты длиной 76 и 74 н. о. содержат на конце спирали H42 шпильку из 4 и 3 пар оснований, соответственно, а фрагмент длиной 73 н. о. имеет один неспаренный нуклеотид на 3'-конце. Для получения более стабильной шпильки 5'- и 3'-концы Mja23SpRHК(76) и Mja23SpRHК(74) были изменены таким образом, чтобы образовывалась каноническая пара G–C.

Фрагменты Mja23SpRHК(73), Mja23SpRHК(74) и Mja23SpRHК(76) синтезировались транскрипцией in vitro с линеаризованных плазмид pUC18, содержащих матрицы, соответствующие специфичным фрагментам pRHК, с использованием T7 РНК-полимеразы. Синтезированные фрагменты 23S pRHК были очищены от компонентов транскрипционной смеси по схеме, использовавшейся для выделения Mja23SpRHК(95). Чистота полученных фрагментов pRHК представлена на Рис. 28А.
Рис. 27. Вторичная структура фрагментов 23S рРНК из M. jannaschii, соответствующих спиралям H42-44, длиной (A) 95 н. о.; (B) 76 н. о.; (V) 74 н. о.; (Г) 73 н. о.

Кристаллизация комплексов MjaP0NTF с фрагментами 23S рРНК разной длины

Образование комплексов MjaP0NTF с фрагментами рРНК длиной 73, 74 и 76 н. о. осуществлялось смешиванием индивидуальных компонентов как описано ранее для комплекса MjaP0NTF-23SpPHK(95). MjaP0NTF образует гомогенные комплексы с каждым фрагментом рРНК (Рис. 28Б).
Рис. 28. (А) Электрофоретический анализ (15% ПААГ, рН 7.8 в присутствии 8 М мочевины) препаратов РНК. 1 – Mja23SpPHK(73); 2 – Mja23SpPHK(74); 3 – Mja23SpPHK(76). (Б) Электрофоретический анализ (10% ПААГ, рН 8.3; 10 мМ MgCl₂) гомогенности препаратов фрагментов 23S рНК и их способности образовывать комплекс с MjaP0NTF. 1 – Mja23SpPHK(73); 2 – Mja23SpPHK(74); 3 – Mja23SpPHK(76); 4 – комплекс MjaP0NTF-23SpPHK(73); 5 – комплекс MjaP0NTF-23SpPHK(74); 6 – комплекс MjaP0NTF-23SpPHK(76). Гели окрашены бромистым этидием.

Полученные РНК-белковые комплексы кристаллизовали методом диффузии паров в висящей капле при температуре 22°С. Концентрация комплексов в капле составляла 7-8 мг/мл. Стартовыми были выбраны условия кристаллизации, в которых получали кристаллы комплекса MjaP0NTF-23SpPHK(95). В этих условиях удалось получить микрокристаллы комплексов MjaP0NTF с укороченными фрагментами 23S рНК. Для роста более совершенных кристаллов комплексов была проведена оптимизация условий кристаллизации с использованием разных видов осаждающих реагентов. Наиболее подходящим осадителем оказался полиэтиленгликоль (ПЭГ) с молекулярными массами 6000 и 8000. Рост крупных кристаллов комплекса MjaP0NTF-23SpPHK(74) наблюдался в диапазоне концентраций осаждающего реагента 7-9%. (Рис. 29Б). Кристаллы MjaP0NTF-23SpPHK(76) вырастали до более крупных размеров при добавлении в кристаллизационную смесь 2-метил-2,4-пентадиола (MPD) до конечной концентрации 3% (Рис. 29В). А росту кристаллов MjaP0NTF-23SpPHK(73) способствовало добавление в каплю хлорида кобальта до концентрации 10 мМ и MPD до 2% (Рис. 29А).

Кристаллы комплексов MjaP0NTF с фрагментами 23S рНК длиной 73 и 76 н. о. отражали рентгеновские лучи с низким разрешением (около 20 Å). Кристаллы комплекса MjaP0NTF-23SpPHK(74) оказались лучшего качества. С кристаллов этого комплекса на
синхротроне BESSY II (г. Берлин, Германия) был снят набор дифракционных данных с разрешением 3.2 Å.

Рис. 29. (А) Фотография кристаллов комплекса MjaP0NTF-23SpPHK(73), полученных в присутствии 50 mM какодилата натрия, pH 6.5, 0.5 mM CTAB, 0.2 M KCl, 0.1 M ацетата магния, 10 mM CoCl₂, 2% MPD, 8% ПЭГ 6000. (Б) Фотография кристалла комплекса MjaP0NTF-23SpPHK(74), полученного в присутствии 50 mM какодилата натрия, pH 6.5, 0.5 mM CTAB, 0.2 M KCl, 0.1 M ацетата магния, 8% ПЭГ 8000. (В) Фотография кристаллов комплекса MjaP0NTF-23SpPHK(76), полученных в присутствии 50 mM какодилата натрия, pH 6.5, 0.5 mM CTAB, 0.2 M KCl, 0.1 M ацетата магния, 3% MPD, 7% ПЭГ 6000.

Определение структуры комплекса MjaP0NTF-23SpPHK(74)

Для решения проблемы фаз применялся метод молекулярного замещения. В качестве стартовой поисковой модели использовалась структура изолированного MjaP0NTF (PDB код 3JSY) и фрагмент структуры 23S рРНК (1144-1217 н. о., нумерация по H. marismortui) в составе 50S субчастицы рибосомы из H. marismortui (PDB код 1FFK). В результате удалось получить модель комплекса MjaP0NTF-23SpPHK(74), которая затем уточнялась в программе Refmac программного комплекса CCP4 (Murshudov et al., 1997) до разрешения 3.3 Å (R-фактор = 24.5% и R_free-фактор = 29.9%).

Уточненная модель комплекса MjaP0NTF-23SpPHK(74) соответствует всем стереохимическим параметрам. Окончательная модель содержит 3216 атомов, два иона Mg²⁺ и три иона K⁺. Статистика и параметры модели приведены в таблице 6 (раздел 2.5.3.3. в Экспериментальной части). Координаты атомов модели депонированы в банк белковых структур (PDB код 5D6G).
1.3. Тройной комплекс MjaP0NTF-MjaL11-23SpPHK(74)

Для бактериального белка L11 установлено, что положение его N-концевого домена меняется относительно C-концевого домена в процессе рабочего цикла рибосомы (Jonker et al., 2007). После связывания белка L11 с рибосомой N-концевой домен смещается на 21° в сторону pРНК в результате конформационных перestroек в структуре белка. Определение структуры белка MjaL11 в комплексе с MjaP0NTF и специфичным фрагментом 23S pРНК позволяет визуализировать основание архейного рибосомного Р-выступа и проанализировать влияние связывания белка L11 на структуру 23S pРНК и его взаимодействие с белком MjaP0NTF.

Получение и кристаллизация комплекса MjaP0NTF-MjaL11-23SpPHK(74)

Комплекс MjaP0NTF-MjaL11-23SpPHK(74) был получен смещением индивидуальных компонентов. Для образования тройного комплекса к фрагменту pРНК добавляли небольшой избыток белковых компонентов, чтобы вся pРНК вошла в состав комплекса. Далее избыток белков отделяли с помощью гель-фильтрации. Гомогенность очищенного комплекса MjaP0NTF-MjaL11-23SpPHK(74) анализировали методом электрофореза в неденатурирующих условиях (Рис. 30А, дорожка 5).

Рис. 30. (А) Электрофо́ретический анализ (10% ПААГ, рН 8.3; 10 мМ MgCl₂) гомогенности комплексов: 1 – Mja23SpPHK(74); 2 – комплекс MjaP0NTF-23SpPHK(74); 3 – комплекс MjaL11-23SpPHK(74); 4 – комплекс MjaP0NTF-MjaL11-23SpPHK(74), образованный в аналитических количествах; 5 – пиковая фракция после гель-фильтрации, соответствующая MjaP0NTF-MjaL11-23SpPHK(74). Гель окрашен толуидиновым синим. (Б) Фотография кристалла комплекса MjaP0NTF-MjaL11-23SpPHK(74), полученного в присутствии 50 мМ трис-НCl, рН 7.5, 0.15 М KCl, 20 мМ MgCl₂, 15% ПЭГ 4000.
Поиск условий кристаллизации комплекса MjaP0NTF-MjaL11-23SpPHK(74) проводился в наборе условий NucPro (Jena Bioscience). В условиях №23 (50 мМ трис-НCl, рН 7.5, 0.15 М KCl, 20 мМ MgCl2, 15% ПЭГ 4000) через 5 дней появились кристаллы тройного комплекса (Рис. 30Б). От одного из кристаллов комплекса был собран набор дифракционных данных с разрешением 2.9 Å на лабораторной системе рентгеноструктурного анализа PROTEUM X8 (Brüker).

Определение структуры MjaP0NTF-MjaL11-23SpPHK(74)

Пространственная структура MjaP0NTF-MjaL11-23SpPHK(74) была решена методом молекулярного замещения. С помощью этого метода удалось определить положение фрагмента рPHК и белка MjaL11, а также домена 1 белка MjaP0NTF. Ручная правка модели и ее уточнение позволили достроить домен 2 белка MjaP0NTF. Структура MjaP0NTF-MjaL11-23SpPHK(74) была уточнена до разрешения 2.9 Å и значений R-фактора = 26.6% и R_free-фактора = 29.7% и соответствует всем стереохимическим параметрам. Структуре комплекса MjaP0NTF-MjaL11-23SpPHK(74) присвоен PDB код 5DAR.

1.4. Комплекс MjaP0NTF-MjaL11-23SpPHK(74) с тиострептоном

В ранних исследованиях функционирования архейных рибосом *in vitro* было показано, что биосинтез белка у архей ингибируется после добавления антибиотика тиострептона. Было предположено, что, архейный белок L11, также как и бактериальный L11, может служить мишенью для воздействия тиострептона на рибосому (Beauclerk *et al.*, 1985).

Опираясь на эти данные, мы попробовали получить комплекс MjaP0NTF-MjaL11-23SpPHK(74) с антибиотиком тиострептоном. Образование комплекса с антибиотиком определяли по изменению подвижности комплекса в геле. При связывании тиострептона с тройным комплексом наблюдалось увеличение подвижности такого комплекса (Рис. 31А, дорожка 5). Мы предположили, что связывание тиострептона фиксирует положение L11NTD, за счет чего образованный комплекс становится более компактным и быстрее движется в геле.

Структура комплекса MjaP0NTF-MjaL11-23SpPHK(74) с тиострептоном позволяет определить место связывания этого антибиотика и оценить изменения в данном РНК-белковом комплексе при его взаимодействии с тиострептоном.
Рис. 31. (А) Электрофоретический анализ (10% ПААГ, pH 8.3; 10 мМ MgCl₂) гомогенности комплексов: 1 – Mja23SpHK(74); 2 – комплекс MjaL11-23SpHK(74); 3 – комплекс MjaP0NTF-23SpHK(74); 4 – комплекс MjaP0NTF-MjaL11-23SpHK(74); 5 – комплекс MjaP0NTF-MjaL11-23SpHK(74)-тиострептон, образованный в аналитических количествах; 6 – пиковая фракция после гель-фильтрации, соответствующая MjaP0NTF-MjaL11-23SpHK(74)-тиострептон. Гель окрашен толуидиновым синим. (Б) Фотография кристаллов комплекса MjaP0NTF-MjaL11-23SpHK(74)-тиострептон, полученных в присутствии 0.1 M трис HCl, pH 7.5, 1 мМ ТСЕР, 0.125 мМ CTAB, 10% ПЭГ 8000, 20% глицерин.

Получение и кристаллизация комплекса MjaP0NTF-MjaL11-23SpHK(74)-тиострептон

Образование комплекса MjaP0NTF-MjaL11-23SpHK(74) с антибиотиком проходило в два этапа. Первоначально были смешаны индивидуальные компоненты для образования тройного комплекса. Стоит отметить, что антибиотик тиострептон не растворим в воде, поэтому его растворяли в диметилсульфоксиде и добавляли к предварительно образованному комплексу в пятикратном избытке. Разделение конечного комплекса, белков и антибиотика проводилось с помощью гель-фильтрации. Гомогенность очищенного комплекса MjaP0NTF-MjaL11-23SpHK(74)-тиострептон была проверена электрофорезом в неденатурирующих условиях (Рис. 31А, дорожка 6).

После получения комплекса MjaP0NTF-MjaL11-23SpHK(74)-тиострептон был проведен поиск условий его кристаллизации. Были получены кристаллы комплекса «игольчатой» формы в условиях NucPro №42 (Jena Bioscience): 0.1 М трис HCl, pH 8.0, 1 мМ ТСЕР, 10% ПЭГ 8000, 10% глицерина, с добавлением детергента CTAB. Рост одиночных крупных кристаллов наблюдался после оптимизации условий кристаллизации.
(Рис. 31Б). С кристаллов комплекса MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон на синхротроне ESRF (г. Гренобль, Франция) был собран набор дифракционных данных с разрешением 2.8 Å.

Определение структуры MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон

Определение пространственной структуры комплекса MjaP0NTF-MjaL11-23SpPHK(74) с тиострептоном осуществлялось методом молекулярного замещения. Структура MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон была уточнена до разрешения 2.8 Å и значений R-фактора = 20.5% и R_free-фактора = 24.5%. Конечная модель комплекса соответствует всем стереохимическим параметрам. Координаты модели депонированы в банк белковых структур (PDB код 5D8H).

1.5. Перевязывание структуры комплекса P0•(P1NTD)6 из архей P. horicoshii

Определение в 2010 году структур комплекса белков P0•(P1NTD)6 из P. horicoshii (PhoP0-P1NTD) (Naganuma et al., 2010) и двухдоменного N-концевого фрагмента белка P0 из M. jannaschii (Kravchenko et al., 2010) стало существенным прорывом в изучении структуры P-выступа архейной рибосомы. В структуре PhoP0-P1NTD исследователи не смогли визуализировать структуру домена 2 белка P0 и обозначили его как неупорядоченный участок, тогда как домен 2 MjaP0NTF хорошо структурирован. Нами был проведен анализ структуры комплекса PhoP0-P1NTD, и оказалось, что структура белка P0 вписана в карту электронной плотности с ошибками, например, вместо спирали α4 белка P0 была построена петля, кроме того, были обнаружены фрагменты неинтерпретированной электронной плотности в районе домена 2 (Рис. 32 А, Б, Д). Для исправления структуры белка P0 было проведено перевязывание всей структуры комплекса PhoP0-P1NTD.

На первом этапе перевязивания были удалены около 30 аминокислотных остатков (59-89 а. о.) в стартовой структуре белка P0. После этого осуществлялось корректное встраивание этих остатков одного за другим и расчет карты электронной плотности. Такие шаги позволили построить две α-спирали α3 и α4 (Рис. 32 В, Г).

Для первых семи аминокислотных остатков белка P0 электронная плотность была очень низкого качества. Удаление этих семи N-концевых остатков и исправления спиралей α3 и α4 улучшило общие стереохимические параметры структуры. При перерасчете карты электронной плотности после исправления положения остатков 104-109 и 183-188 появилась дополнительная плотность в области перетяжки белка P0. Постепенное встраивание аминокислотных остатков помогло определить полностью
структуры тяжей β_4 и β_{10}, которые образуют перетяжку между доменами, и спирали α_7 домена 2 белка P0 (Рис. 33 А, Б). На Рис. 33В с помощью наложения структур представлены основные изменения в белке P0 после переуточения структуры PhoP0-P1NTD.

Рис. 32. Спирали α_3-α_4 белка P0 в комплексе P0•(P1NTD)$_6$ из P. horoshii до (А, Б) и после (В, Г) переуточения структуры; (Д) наложение основной цепи спиралей α_3-α_4 белка P0 до и после переуточения структуры. На рисунках (А) и (В) показана основная цепь с боковыми группами, на рисунках (Б) и (Г) – C_α-атомы. На рисунке (Д) полипептидная цепь до переуточения структуры окрашена зеленым цветом, а после переуточения – коричневым.
Рис. 33. Фрагмент структуры белка P0 в комплексе P0•(P1NTD)$_6$ из P. horicoshii в области перетяжки до (A) и после (B) переуточения. (В) Наложение структур белка P0 в комплексе P0•(P1NTD)$_6$ из P. horicoshii до и после переуточения. Пептидная цепь до переуточения структуры окрашена зелёным цветом, а после переуточения – коричневым.

Поскольку белки комплекса PhoP0-P1NTD формилированы и в структуре присутствует дополнительная электронная плотность для формильной группы, N-концевые метионины белков P1 были исправлены на формилметионин. Также была интерпретирована электронная плотность для 6 ионов Cl$^-$, 3 ацетат-ионов, 277 молекул воды и 7 молекул полиэтиленгликоля (ПЭГ). После всех исправлений и дополнений структуры PhoP0-P1NTD значения R-фактора были снижены с 22.0% до 20.5%, R$_{free}$-фактора – с 26% до 25%, а стереохимические параметры структуры улучшены (Табл. 4, раздел 2.5.3.1. в Экспериментальной части).

2. Анализ структур компонентов архейного рибосомного P-выступа
2.1. Структура изолированного рибосомного белка MjaL11

На Рис. 34 представлена пространственная структура белка MjaL11 и распределение вторичной структуры по аминокислотной последовательности белка.

MjaL11 является двухдоменным белком с молекулярной массой 17.5 кДа (Рис. 34A). N-концевой домен (MjaL11NTD) содержит аминокислотные остатки 1-68 и образован двумя α-спирами и протяженным β-листом из трех антипараллельных β-тяжей (β1-α1-α2-β2-β3). Спиралы α1 и α2 расположены с вогнутой стороны β-листа. Спираль α2 ориентирована поперек β-листа и расположена в его углублении. Спираль α1 является пролин-богатой. Четыре консервативных остатка пролина расположены на
внешней стороне этой спирали. N- и C-концевые домены белка соединены короткой перетяжкой, которая содержит всего четыре аминокислотных остатка (GIPP72). C-концевой домен (MjaL11CTD) является РНК-связывающим и представляет собой компактный глобулярный домен. MjaL11CTD включает в себя аминокислотные остатки 73-161, которые упакованы в четыре α-спирали. Спирали α5 и α6 расположены в пространстве практически параллельно. Стоит отметить, что характерной особенностью этого домена является наличие протяженной петли α3-α4 (81-97 а. о.).

Рис. 34. (А) Пространственная структура изолированного рибосомного белка MjaL11, PDB код 5COL. α-Спирали белка окрашены красным цветом, β-тяжи — голубым. (Б) Выравнивание аминокислотных последовательностей архейных белков L11 из *M. jannaschii* (MjaL11) и *H. marismortui* (HmaL11) и бактериального белка L11 из *T. maritima* (TmaL11). Зеленым цветом выделены гомологичные аминокислотные остатки белков. Элементы вторичной структуры белка MjaL11 показаны спиралями (α-спирали) и стрелками (β-тяжи).
В процессе определения структуры полноразмерного изолированного архейного белка MjaL11 возникла нетривиальная проблема. В ассиметричной части ячейки содержится две молекулы белка, но частичная электронная плотность для протяженной петли α3-α4 имеется только для одной молекулы. Проблема заключается в том, что в электронной плотности соответствующей этой петле имеется разрыв в несколько аминокислотных остатков (с 90 по 92 а. о.; Рис. 35А). Поэтому можно предположить два варианта укладки С-концевого домена изолированного белка MjaL11 (Рис. 35 Б и В). Первый вариант (Рис. 35Б) наиболее близок к укладке MjaL11CTD в РНК-связанном состоянии (Рис. 37, 38, 41А). Второй укладки MjaL11CTD (Рис. 35В) необычен тем, что спираль α3 занимает такое же положение, как и для первого варианта укладки, а остальная часть домена развернута практически на 180°. Для взаимодействия с РНК С-концевой домен со вторым вариантом укладки должен претерпеть существенные конформационные перестройки. Ввиду отсутствия дополнительных данных в пользу существования второго варианта укладки, в дальнейшем анализе будет использоваться структура белка L11 с первым вариантом укладки.

Рис. 35. (А) Фрагмент структуры изолированного рибосомного белка MjaL11 в области петли α3-α4, PDB код 5COL. Голубым цветом окрашен N-концевой домен и спираль α3, зеленым и желтым – С-концевые домены разных мономеров (кроме спирали α3). (Б) Первый и (В) второй варианты укладки С-концевого домена изолированного MjaL11. Красным цветом окрашены 90-92 а. о., определение которых затруднено.

Сравнительный анализ структур изолированного белка L11 из бактерий и архей
На Рис. 34Б представлено выравнивание аминокислотных последовательностей архейного белка MjaL11 и бактериального TmaL11. Гомология этих белков составляет 37%. Несмотря на низкую гомологию данных белков, их пространственные структуры
довольно близки (MjaL11 с первым вариантом укладки) (Рис. 36). Короткая перетяжка
между доменами, состоящая всего из четырех аминокислотных остатков, содержит два
консервативных остатка пролина (Pro71-Pro72, нумерация по M. jannaschii). Структуры
C-концевых доменов бактериального и архейного L11 также близки по укладке (Рис. 36Б).
Длинная петля α3-α4 характерна для обоих белков и не структурирована. Отличительное
свойство архейного белка L11 от бактериального – наличие дополнительных 15 а. о. в
C-концевой части, которые формируют спираль α6.

Рис. 36. Наложение структур бактериального (T. maritima, PDB код 2K3F) и архейного
(M. jannaschii, PDB код 5COL) изолированных белков L11 по N-концевому домену (А) и
C-концевому (Б). Голубым цветом окрашен бактериальный белок, зеленым – архейный.

2.2. Анализ структур комплексов MjaP0NTF со специфичным фрагментом 23S
pPHK в отсутствии и присутствии MjaL11

Пространственные структуры комплекса белка MjaP0NTF с фрагментом 23S pPHK
и тройного комплекса MjaP0NTF-MjaL11-23SpPHK(74) представлены на Рис. 37 и 38,
соответственно.

Рис. 38. Пространственная структура комплекса MjaP0NTF-MjaL11-23SpHK(74), PDB код 5DAR. Фрагмент рPHK окрашен в коричневый цвет, MjaP0NTF – в синий, MjaL11 – в зеленый.
Взаимодействие MjaP0NTF с 23S рРНК не влияет на общую укладку полипептидной цепи белка по сравнению с укладкой белка в изолированном состоянии. N-концевой рНК-связывающий домен 1 MjaP0NTF содержит аминокислотные остатки 10-111 и 192-221. Таким образом, N- и C-концы MjaP0NTF расположены в одном домене, а домен 2 является вставкой в домен 1. Оба домена соединены между собой перетяжкой, которая образована антипараллельным β-листом (β4 и β11). Домен 1 состоит из пяти α-спиралей, которые расположены по обе стороны пятитяжевого антипараллельного β-листа. Домен 2 включает в себя остатки 115-188, которые образуют три двухтяжевых антипараллельных β-листов и две α-спирали.

В структурах комплексов MjaP0NTF со специфичным фрагментом 23S рРНК в отсутствии и присутствии MjaL11 обнаружено, что домен 2 белка MjaP0NTF не образует контактов с фрагментом 23S рРНК и отстоит от этого фрагмента на расстоянии более 8 Å. Этот факт опровергает ранее выдвигавшееся нами предположение о том, что домен 2 белка P0 может взаимодействовать со спиралью H44 23S рРНК (Kravchenko et al., 2010).

При связывании с рРНК структура MjaL11NTD не меняется, а структура C-концевого домена подвергается существенным конформационным перестройкам (Рис. 39А). При взаимодействии с рРНК протяженная петля α3-α4 белка MjaL11, а также петля α4-α5 структурируются и принимают форму, повторяющую поверхность малого желобка спирали H43 23S рРНК. Спираль α5 смещается в сторону спирали α3 и располагается вдоль желобка спирали H43. Пространственная укладка C-концевого домена архейного белка MjaL11 в РНК-связанном состоянии идентична укладке C-концевых доменов в структурах архейного белка HmaL11 и бактериальных белков L11 в РНК-связанном состоянии (Рис. 39Б).

Фрагмент 23S рРНК хорошо структурирован (Рис. 37, 38). Спирали H43 и H44 достаточно плотно упакованы. Высокая степень упорядоченности этих спиралей достигается за счет образования межспиральных канонических пар нуклеотидных остатков и стэкинг-взаимодействий. Спираль H42 служит «мостиком» между спиралями H43 и H44 и телом рибосомы. Эта спираль представляет собой регулярную спираль в А'-форме, которая прерывается только в области мотива «излом-поворот» (Klein et al., 2001). Нуклеотидные остатки A1155, A1156 и G1157 образуют выпетливание. Канонические пары C1152•G1223 и C1153•G1222, неканоническая пара G1161•U1218 и нуклеотидные остатки G1157, A1158, G1220, A1221 формируют мотив «излом-поворот». Благодаря этому мотиву спираль H42 изгибается практически на 90°. Структура этого фрагмента рРНК не изменяется ни при связывании MjaL11, ни при взаимодействии с антибиотиком тиострептоном (Рис. 45).
Рис. 39. (A) Наложение структур C-концевых доменов рибосомного белка MjaL11 в свободном состоянии (оранжевый, PDB код 5COL) и в составе комплекса MjaP0NTF-MjaL11-23SpPHK(74) (зеленый, PDB код 5DAR). (Б) Наложение структур C-концевых доменов архейных и бактериальных белков L11 в РНК-связанном состоянии: в составе бактериальных комплексов TmaL11-23SpPHK(58) (синий, PDB код 1MMS) и EcoL11CTD-23SpPHK(58) (рыжий, PDB код 1HC8), архейного комплекса MjaP0NTF-MjaL11-23SpPHK(74) (зеленый, PDB код 5DAR) и в составе 50S субчастицы архейной рибосомы (розовый, PDB код 4HUB). Для лучшего восприятия N-концевые домены TmaL11, MjaL11 и HmaL11 не изображены. Фрагмент РНК окрашен в серый цвет.

2.3. Взаимодействие белков архейного рибосомного P-выступа с 23S рPHK

Анализ взаимодействия MjaL11 и MjaP0NTF c 23S рPHK

MjaP0NTF связывается со спиралью H42 23S рPHK около мотива «излом-поворот» с внешней стороны угла. Ранее отмечалось, что для взаимодействия белков L10 и P0 с 23S рPHK необходима правильная пространственная укладка спиraleй H42-44 23S рPHK (Diaconu et al., 2005). Область контакта белка с 23S рPHK сформирована атомами главной цепи и боковых групп, принадлежащих спирами α1, α2 и α3, а также петлям β1-α2 и β2-α3. N-концевая часть спиraleи α1 взаимодействует с C1153 и A1156. Спираль α2 образует обширную сеть водородных связей с G1164, G1166, A1167, U1192. Аминокислотные остатки петли β2-α3 вносят большой вклад в формирование РНК-белкового контакта. Практически все контакты белка MjaP0NTF приходятся на сахаро-фосфатный остов 23S рPHK. Стоит отметить, что Arg66 спиraleи α3 стабилизирует положение выплетающегося A1156, образуя стэкинг-взаимодействие с азотистым основанием этого нуклеотидного остатка.
Основной участок связывания 23S рРНК с белком MjaL11 расположен на спирали H43. Во взаимодействие с рРНК вовлечены как атомы главной цепи, так и боковых групп спиралей α3-6 и двух петель α3-α4 и α4-α5 С-концевого домена L11. Спираль α3 образует водородные связи с нуклеотидными остатками U1170, G1173 и C1174. Lys110 спирали α4 контактирует только с U1170, а Gln146 спирали α6 – с C1189. Аминокислотные остатки спирали α5 образуют протяженную сеть водородных связей с малым желобком спирали H43 (G1168, U1170, G1172, C1190, U1191, U1193, A1198). Структурированные петли α3-α4 и α4-α5, расположенные по обе стороны спирали α4, взаимодействуют с малым желобком спирали H43 23S рРНК. В отличие от MjaP0NTF, белок MjaL11 образует только половину контактов с сахaro-фосфатным остовом 23S рРНК, а остальные контакты – с азотистыми основаниями рРНК.

В таблице 9 суммированы все водородные связи и стэкинг-взаимодействия белков MjaP0NTF и MjaL11 с фрагментом 23S рРНК. Площадь поверхности контакта рРНК с белками MjaP0NTF и MjaL11 примерно одинакова и составляет 1049 и 1075 Å², соответственно. Участки связывания этих белков с рРНК расположены рядом, но MjaP0NTF и MjaL11 между собой практически не взаимодействуют (Рис. 38). Была обнаружена лишь одна слабая водородная связь между РНК-связывающими доменами обоих белков – между атомом кислорода главной цепи остатка Arg47 белка MjaP0NTF и гидроксильной группой Tyr117 белка MjaL11 (длина водородной связи 3.4 Å). Домен 2 MjaP0NTF не контактирует с N-концевым доменом MjaL11.

Сравнительный анализ участков взаимодействия компонентов L12/P-выступа с 23S рРНК

N-концевой РНК-связывающий домен рибосомных белков L10 и P0 достаточно консервативен и имеет схожую пространственную структуру (Ben-Shem et al., 2011; Diaconu et al., 2005; Kravchenko et al., 2010). С-концевой РНК-связывающий домен архейного и бактериального L11 также структурно консервативен (Klein et al., 2004; Wimberly et al., 1999). Взаимозаменяемость белковых компонентов основания L12/P-выступа с образованием гибридной рибосомы (Nomura et al., 2006; Uchiumi et al., 2002b) подтверждает их структурную гомологию и схожий способ взаимодействия с рРНК.
Таблица 9. Водородные связи и стэкинг-взаимодействие белков MjaL11 и MjaPONTF с фрагментом 23S pPHK.

<table>
<thead>
<tr>
<th>Атом белка</th>
<th>Атом РНК</th>
<th>Длина связи, Å</th>
<th>Атом белка</th>
<th>Атом РНК</th>
<th>Длина связи, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala10 N</td>
<td>C1153 OP1</td>
<td>3.0</td>
<td>Thr73 N</td>
<td>U1170 OP1</td>
<td>2.8</td>
</tr>
<tr>
<td>Lys13 NZ</td>
<td>A1157 OP1</td>
<td>2.8</td>
<td>Thr74 OG1</td>
<td>G1173 OP1</td>
<td>3.2</td>
</tr>
<tr>
<td>Asp37 N</td>
<td>G1164 O2'</td>
<td>3.3</td>
<td>Lys78 NZ</td>
<td>C1174 OP1</td>
<td>2.7</td>
</tr>
<tr>
<td>Asp37 OD1</td>
<td>G1164 O2'</td>
<td>3.0</td>
<td>Ala86 N</td>
<td>C1174 OP1</td>
<td>3.0</td>
</tr>
<tr>
<td>Ala40 N</td>
<td>G1166 OP1</td>
<td>2.5</td>
<td>His88 O</td>
<td>G1173 N2</td>
<td>2.8</td>
</tr>
<tr>
<td>Pro41 N</td>
<td>A1167 O2'</td>
<td>3.2</td>
<td>His88 ND1</td>
<td>C1174 O2'</td>
<td>3.1</td>
</tr>
<tr>
<td>Gln44 OE1</td>
<td>A1167 O2'</td>
<td>2.9</td>
<td>Pro90 N</td>
<td>C1186 O2'</td>
<td>3.0</td>
</tr>
<tr>
<td>Gln44A NE2</td>
<td>U1192 O2'</td>
<td>2.4</td>
<td>Arg91 NH1</td>
<td>A1187 O2'</td>
<td>2.7</td>
</tr>
<tr>
<td>Met58 N</td>
<td>A1194 OP1</td>
<td>2.8</td>
<td>His92 NE2</td>
<td>A1187 OP1</td>
<td>2.9</td>
</tr>
<tr>
<td>Arg60 NE</td>
<td>G1157 OP1</td>
<td>3.1</td>
<td>Lys110 NZ</td>
<td>U1170 OP2</td>
<td>2.7</td>
</tr>
<tr>
<td>Arg60 NH1</td>
<td>C1216 OP1</td>
<td>2.7</td>
<td>Ser116 OG</td>
<td>U1191 O2'</td>
<td>2.8</td>
</tr>
<tr>
<td>Arg60 NH1</td>
<td>C1216 OP2</td>
<td>3.2</td>
<td>Tyr117 OH</td>
<td>U1193 OP1</td>
<td>2.5</td>
</tr>
<tr>
<td>Arg60 NH2</td>
<td>C1157 OP1</td>
<td>2.6</td>
<td>Lys124 NZ</td>
<td>U1191 OP1</td>
<td>2.8</td>
</tr>
<tr>
<td>Asn61 N</td>
<td>G1217 OP1</td>
<td>2.8</td>
<td>Glu125 OE2</td>
<td>G1168 N2</td>
<td>3.0</td>
</tr>
<tr>
<td>Asn61 ND2</td>
<td>G1217 OP1</td>
<td>2.8</td>
<td>Glu125 N</td>
<td>C1190 O2'</td>
<td>3.0</td>
</tr>
<tr>
<td>Thr62 OG1</td>
<td>G1157 OP2</td>
<td>2.7</td>
<td>Gly128 O</td>
<td>A1198 N6</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thr129 OG1</td>
<td>U1170 O4</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ser132 OG</td>
<td>G1172 O2'</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ser132 O</td>
<td>G1172 N2</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gln146 NE2</td>
<td>C1189 O2'</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Стэкинг-взаимодействие

| Arg66 | A1156 | 3.1 |
комплексе с 23S рРНК из *M. jannaschii* позволяет сравнить их РНК-белковые контакты с соответствующими участками в известных структурах белков P0 и L11 связанных с рРНК.

Участки связывания рРНК располагаются на поверхности белков P0 из *H. marismortui* и *M. jannaschii* схожим образом (Рис. 40А). Консервативные аминокислотные остатки расположены по центру контактирующей поверхности, а неконсервативные – по периферии. Стоит отметить, что только атомы главной цепи неконсервативных остатков вовлечены во взаимодействие с рРНК. Область контакта с рРНК эукариотического белка P0 из *S. cerevisiae* незначительно отличается от области контакта с рРНК архейных P0 (Рис. 40А).

Область взаимодействия архейных и бактериальных L11 с рРНК достаточно консервативна (Рис. 40Б). Основная область контакта этих белков расположена на спиралях α3 и α5 и петлях α3-α4 и α4-α5. Остальные контакты могут варьироваться в зависимости от организма.

На Рис. 40В на поверхности фрагментов высокомолекулярной рРНК больших субчастиц рибосом из архей, бактерий и эукариот отмечены участки, с которыми взаимодействуют белки P0 и/или L11. Несмотря на небольшие отличия, область контакта белков P0 и L11 с рРНК консервативна.

2.4. Взаимодействие архейного рибосомного Р-выступа с антибиотиком тиострептоном

Тиострептон является антибиотиком тиазольного класса. Он состоит из 16 компонентов, формирующих консервативную петлю 1 (компоненты 1-7), петлю 2 (компоненты 8-12) и «хвост» (компоненты 14-16), и соединенных между собой компонентом TPY (Рис. 41А). Показано, что добавление тиострептона к архейной и бактериальной рибосомам подавляет гидролиз ГТФ (Beauclerk *et al.*, 1985; Thompson *et al.*, 1979).

Пространственная структура комплекса MjaP0NTF-L11-23SpPHK(74)-тиострептон представлена на Рис. 41Б.

Область связывания тиострептона в архейном рибосомном комплексе MjaP0NTF-MjaL11-23SpPHK(74) расположена между спиралями H43 и H44 23S рРНК и N-концевым доменом белка MjaL11 (Рис. 41Б). Этот способ взаимодействия антибиотика с данным тройным комплексом аналогичен его взаимодействию с бактериальной рибосомой (Harms *et al.*, 2008).
Анализ контактирующих поверхностей белков Р0 и L11 и фрагментов 23/25S пРНК. (А) Поверхность структуры N-концевых доменов белка P0 из архей *H. marismortui* и *M. jannaschii* и эукариот *S. cerevisiae*. Синим цветом окрашены аминокислотные остатки, контактирующие с пРНК. (Б) Поверхность структуры С-концевых доменов белка L11 из архей *H. marismortui* и *M. jannaschii* и бактерии *T. maritima*. Красным цветом окрашены аминокислотные остатки, контактирующие с 23S пРНК. (В) Поверхность структуры фрагментов 23/25S пРНК в районе L12/P-выступа из архей *H. marismortui* и *M. jannaschii*.

Рис. 40.
эукариот *S. cerevisiae* и бактерии *T. maritima*. Синим цветом окрашены нуклеотидные остатки, контактирующие с P0, красным – с L11, коричневым – с P0 и L11. Для построения поверхностей белков и pРНК были использованы структуры с PDB кодами 4HUB, 3U5H, 1MMS, 5DAR.

![Diagram](image)

Взаимодействие тиострептона с pРНК и MjaL11 в комплексе преимущественно гидрофобное, через стэкинг-взаимодействия. Петля 1 тиострептона занимает место между вершиной спиралей H43 и 44 23S pРНК и спиралью α1 MjaL11 (Рис. 41А). Петля 2, за исключением QA8, наоборот, обращена в сторону растворителя. Серосодержащие тиазольные кольца петли 1 и «хвоста» участвуют в стэкинг-взаимодействиях с азотистыми основаниями РНК и пролин-богатым участком MjaL11.

С компонентами бактериальной рибосомы (нуклеотидные остатки A1078 и A1106 23S pРНК и аминокислотные остатки Pro21 и Pro22 белка L11) тиострептон также взаимодействует посредством стэкинг-взаимодействий (Рис. 42 Б и Г). Основное отличие во взаимодействии тиострептона с бактериальной и архейной рибосомами заключается в положении «хвоста» тиострептона (Рис. 42 А и Б). В бактериальной рибосоме этот «хвост» расположен вдоль спирали α1 бактериального белка L11 (Рис. 42Б). Gln29 бактериального L11 образует две водородные связи с THZ14 тиострептона. В архейном рибосомном комплексе «хвост» тиострептона занимает положение, отличное от его положения в бактериальной рибосоме (Рис. 42 А и Д). DHA15 и DHA16 расположены в непосредственной близости от пролин-богатого участка спирали α6 MjaP0NTF (Рис. 42Д). NH2-группа модифицированного компонента DHA16 отстоит на расстояние 3.8 Å от атома кислорода главной цепи MjaP0NTF.
Рис. 42. Фрагменты структуры комплекса MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон в области контакта тиострептона (серый) со спиралью α1 архейного (А) и бактериального (Б) белков L11; со спиральми H43-44 архейной (В) и бактериальной (Г) 23S рРНК; со спиралью αб P0NTF (Д). Тиострептон окрашен в серый цвет, архейный L11 – в зеленый, бактериальный L11 – в лимонный, P0NTF – в голубой, архейная pPHK – в коричневый, бактериальная pPHK – в розовый. Молекула воды представлена в виде светло-голубого шарика.
2.5. Подвижность компонентов основания P-выступа архейной рибосомы

Ранее при анализе структуры изолированного MjaP0NTF было показано, что домен 2 подвижен благодаря гибкой перемычке (Kravchenko et al., 2010). Из-за этой подвижности структуру домена 2 не удается визуализировать (за исключением спирами α7 домена 2) в составе комплекса архейных рибосомных белков PhoP0-P1NTD (Рис. 33В).

Знание структур MjaP0NTF в свободном состоянии (Kravchenko et al., 2010) и в ряде комплектсов с pPHK, которые определены в данной работе, и белка P0 из H. marismortui (Gabdulkhakov et al., 2013) позволило проанализировать конформационные изменения в структуре белка P0 в свободном от РНК и связанном с РНК состояниях. Структуры N-концевых доменов 1 и 2 при связывании c 23S pPHK не меняются. Однако при наложении структур архейного белка P0 по домену 1 выяснилось, что положение домена 2 белка P0 отличается в каждой структуре (Рис. 43А). Максимальная амплитуда домена 2 составляет 41°. Наиболее близкое положение к pPHK домен 2 принимает в структуре белка P0 в составе 50S субчастицы рибосомы из H. marismortui, при этом он все же не взаимодействует с 23S pPHK (наименьшее расстояние от домена 2 до pPHK составляет 5 Å) (Рис. 43Б). Наиболее удаленное положение от pPHK этот домен занимает в структуре комплекса MjaP0NTF-MjaL11-23SpPHK(74) с тиострептоном. Домен 2 в структуре изолированного белка MjaP0NTF находится в промежуточном положении. Подвижность домена 2 белка P0 имеет интересную особенность – смещение домена происходит только в одной плоскости (Рис. 43В).

Суммируя вышеизложенные данные, можно заключить, что образование комплекса белка P0 с димерами белка P1 (Naganuma et al., 2010) и связывание P0 с 23S pPHK не только не фиксируют домен 2 белка P0 в определенном положении, но и не влияют на его подвижность. Биохимические эксперименты показывают, что удаление домена 2 в архейном белке P0 приводит к ухудшению связывания фактора элонгации трансляции 2 с рибосомой, а также к снижению ГТФазной активности рибосомы и уровня синтеза полифенилаланина (Naganuma et al., 2010). Поэтому наиболее вероятно, что подвижность домена 2 белка P0 может способствовать взаимодействию факторов элонгации с рибосомой и их более точному расположению в ГТФаза-связывающем центре.
Рис. 43. Наложение структур первых двух доменов белка P0, демонстрирующее подвижность домена 2: (A) в комплексе с фрагментом 23S pPHK; (B) в комплексе с фрагментом 23S pPHK, изображение повернуто на 70° вправо; (B) без фрагмента 23S pPHK, изображение повернуто на 90° вправо. Наложение белка проводилось по домену 1. Белок P0 представлен: в составе 50S субчастицы рибосомы из H. marismortui (красный, PDB код 4HUB), в изолированном состоянии (голубой и желтый, PDB код 3JSY), в комплексе с фрагментом 23S pPHК (оранжевый, PDB код 5D6G), в составе комплекса MjaP0NTF-MjaL11-23SpPHK(74) (синий и светло-синий, PDB код 5DAR), и в составе комплекса MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон (зеленый, PDB код 5D8H). Фрагмент pPHK окрашен в серый цвет.

При связывании изолированного бактериального белка L11 с 23S pPHK происходит смещение его N-концевого домена на 21° в сторону pPHK, а при взаимодействии с
антибиотиком тиострептоном – дальнейшее смещение в сторону рРНК еще на 26° (Рис. 10 в Литературном обзоре) (Harms et al., 2008; Jonker et al., 2007). Было предположено, что бактериальный белок L11 функционирует в рибосоме как молекулярный переключатель, который регулирует взаимодействие фактора элонгации 2 с рибосомой в процессе белкового синтеза (Harms et al., 2008).

При наложении структур архейного рибосомного белка L11 оказалось, что его N-концевой домен тоже обладает определенной подвижностью (Рис. 44). Амплитуда движения N-концевого домена белка L11 из M. jannaschii, структура которого была определена в составе белка в свободном состоянии и в комплексе с рРНК, составляет около 20°. Важно отметить, что положение L11NTD в составе 50S субчастицы рибосомы из H. marismortui отличается от положения этого же домена в составе комплекса MjaP0NTF-MjaL11-23SpPHK(74) (смещение около 50°). Подвижность N-концевого домена архейного рибосомного белка L11 наводит на мысль, что архейный белок L11, подобно бактериальному аналогу, также может играть роль молекулярного переключателя на рибосоме.

Рис. 44. Наложение структур архейного белка L11, связанного с фрагментом 23S рРНК (серая поверхность). Наложение белка проводилось по C-концевому домену. Белок L11 представлен в изолированном состоянии (желтый, PDB код 5COL), в РНК-связанном состоянии с антибиотиком (зеленый, PDB код 5D8H) и без антибиотика (голубой, PDB код 4HUB; оранжевый, PDB код 5DAR).

Участок высокомолекулярной рРНК большой рибосомной субчастицы, который соответствует спиралям H42-44 и входит в состав ГТФаза-связывающего центра рибосомы, высоко консервативен (Gonzalo and Reboud, 2003). Примерно две трети нуклеотидных остатков, формирующих этот участок (1140-1235 н. о., нумерация по
M. jannaschii), идентичны во всех доменах жизни. На Рис. 45 представлено наложение фрагментов пространственной структуры 23/25S рНК (спирали H42-44) из архей, бактерий и эукариот. Видно, что пространственная структура этого участка рНК универсальна. Нуклеотидные остатки, которые неконсервативны, расположены в спиралях попарно и образуют каноническую нуклеотидную пару, что способствует сохранению пространственной структуры этого участка рНК. Поэтому среднеквадратичное отклонение с 1154 по 1221 н.о. (нумерация по M. jannaschii) невелико и составляет всего 1.25 Å².

Рис. 45. Наложение фрагментов структур 23/25S рНК в районе L12/P-выступа: из архей H. marismortui (оранжевый, PDB код 4HUB) и M. jannaschii в составе разных комплексов (голубой – MjaP0NTF-23SpHK(74), PDB код 5D6G; синий и желтый – MjaP0NTF-MjaL11-23SpHK(74), PDB код 5DAR; зеленый – MjaP0NTF-MjaL11-23SpHK(74)-тиострептон, PDB код 5D8H), из эукариот S. cerevisiae (коричневый, PDB код 3U5H), из бактерий T. thermophilus (красный, PDB код 4JUX) и D. radiodurans (серый, PDB код 2ZJR; темно-красный – с тиострептоном, PDB код 3CF5).

Из литературных данных известно, что архейные рибосомные комплексы P0-P1 и белок L11, а также их эукариотические гомологии, могут замещать белки L12-выступа на бактериальной рибосоме (Nomura et al., 2006). Универсальность пространственной укладки спиралей H42-44 23/25S рНК (Рис. 45), а также схожие контактирующие с рНК поверхности белков P0/L10 и L11 среди всех доменов жизни (Рис. 40), служат наглядным объяснением того, почему возможна взаимозаменяемость этих белков на рибосоме. В то же время, различия в структурах архейных, эукариотических и бактериальных рибосомных белков, формирующих L12- и P-выступы, определяют специфичность
связывания бактериальных и архейных/эукариотических факторов трансляции к «своим» рибосомам.

Таким образом, результаты данной работы создают базу для понимания структурных основ функционирования P-выступа архейных рибосом. Полученные структуры компонентов архейного бокового выступа помогают дополнить структуры большой субчастицы архейной и эукариотической рибосом. Благодаря высокой гомологии белков рибосомного P-выступа архей и эукариот результаты структурных исследований архейных белков можно использовать для моделирования и изучения структур их эукариотических гомологов.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Разработаны методики выделения рибосомного белка L11 и специфичного фрагмента 23S рРНК из M. jannaschii (23SpPHK(74)), а также методики получения РНК-белковых комплексов MjaP0NTF-23SpPHK(74), MjaP0NTF-MjaL11-23SpPHK(74) и MjaP0NTF-MjaL11-23SpPHK(74) с тиострептоном.

2. Получены кристаллы изолированного рибосомного белка L11 из археи M. jannaschii. Определена и уточнена пространственная структура MjaL11 с разрешением 2.2 Å. Впервые визуализирована структура N-концевого домена архейного рибосомного белка L11.

3. Получены кристаллы комплексов архейных рибосомных белков с фрагментом рРНК – MjaP0NTF-23SpPHK(74) и MjaP0NTF-MjaL11-23SpPHK(74); определены их структуры с разрешением 3.3 Å и 2.9 Å, соответственно.

4. Показано, что, несмотря на большую подвижность домена 2 архейного рибосомного белка P0, этот домен не образует контактов с 23S рРНК. Расположенные рядом на большой рибосомной субчастице архейные белки L11 и P0 практически не взаимодействуют между собой.

5. Анализ пространственных структур архейных рибосомных белков L11 и P0 в комплексе с фрагментом 23S рРНК позволил выявить структурные особенности поверхностей контакта данных белков с рРНК.

6. Получены кристаллы комплекса MjaP0NTF-MjaL11-23SpPHK(74)-тиострептон и определена структура этого комплекса с разрешением 2.8 Å. Показано, что тиострептон связывается схожим образом, как с бактериальной, так и с архейной рибосомами. Место связывания антибиотика тиострептона с архейной рибосомой расположено между N-концевым доменом белка L11 и спиралиами H43-44 23S pРНК.

7. Переуточена кристаллическая структура комплекса рибосомных белков P0•(P1NTD)6 из архе P. horicosshii. Исправлены спирали α3-α4 и достроены спираль α7 и β-тяжи β4 и β10 белка P0.
СПИСОК ЛИТЕРАТУРЫ

БЛАГОДАРНОСТИ

Выражаю глубокую благодарность своим научным руководителям, Марине Борисовне Гарбер и Азату Габдрахмановичу Габдулхакову, за чуткое руководство, нескончаемый интерес к работе, за ценнейшие советы и рекомендации, сделанные как во время выполнения, так и в процессе подготовки настоящей диссертационной работы.

Искренне признателен своему первому учителю, Олесе Кравченко, которая помогла мне в освоении биохимических методов.

Хочу поблагодарить всех сотрудников лаборатории структурных исследований аппарата трансляции и группы структурных исследований рибосомных белков за помощь в совместной работе и доброжелательную атмосферу.

Безмерно благодарен своим родителям и своей жене Валентине за любовь, поддержку и понимание.